Advertisement

Sustainable Biodiesel Production Using Wastewater Streams and Microalgae in South Africa

  • T. Mutanda
  • D. Ramesh
  • A. Anandraj
  • F. Bux
Chapter

Abstract

The diminishing petroleum reserves in the world call for sustainable use of cheaply and readily available substrates such as wastewater streams for biomass and lipid production by microalgae. Treated wastewater is rich in macronutrients, such as nitrates and phosphates, and can therefore be used as a substrate for microalgal cultivation in open raceway ponds. The chemistry and composition of treated wastewater is of significance since it is made up of a wide range of compounds that support microalgal growth. The use of raceway pond technology utilizing wastewater streams feed is a new phenomenon that provides much needed phytoremediation of the wastewater as well as facilitating microalgal mass production. Macronutrient utilization by the microalgae justifies the application of treated wastewater as a sustainable raw material for renewable bioenergy production. The operational parameters in the raceway pond such as light intensity, photoperiod, pH, nutrients, salinity, and temperature are carefully optimized for maximal biomass and lipid yield. The biomass and lipid produced using the raceway pond system undergoes downstream processing in order to get the final product. The lipids are converted via transesterification to produce algae biodiesel. Other biologically active compounds and novel phytochemicals can also be derived from microalgae.

Keywords

Lipid Production Supercritical Fluid Extraction Transesterification Reaction Microalgal Biomass Lipid Yield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anandraj A, Perissinotto R, Nozais C (2008) The recovery of microalgal production and biomass in a South African temporarily—open/closed estuary, following mouth breaching. Estuar Coast Shelf Sci 79:599–606CrossRefGoogle Scholar
  2. 2.
    Anandraj A, Perissinotto R, Nozais C (2007) A comparative study of microalgal production in a marine versus a river-dominated temporarily open/closed estuary, South Africa. Estuar Coast Shelf Sci 73:768–780CrossRefGoogle Scholar
  3. 3.
    Bare WFR, Jones NB, Middlebrooks EJ (1975) Algae removal using dissolved air flotation. J Water Pollut Control 47(1):153–169Google Scholar
  4. 4.
    Beardall J, Young E, Roberts S (2001) Approaches for determining phytoplankton nutrient limitation. Aquat Sci 63:44–69CrossRefGoogle Scholar
  5. 5.
    Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, UKGoogle Scholar
  6. 6.
    Moser Bryan R (2009) Biodiesel production, properties, and feedstocks. In Vitro Cell. Dev Biol Plant 45:229–266. doi: 10.1007/s11627-009-9204-z CrossRefGoogle Scholar
  7. 7.
    Camacho Rubio F, García Camacho F, Fernández Sevilla JM, Chisti Y, Molina Grima E (2003) A mechanistic model of photosynthesis in microalgae. Biotechnol Bioeng 81:459–473CrossRefGoogle Scholar
  8. 8.
    Chen W, Zhang Q, Dai S (2009) Effects of nitrate on intracellular nitrite and growth of Microcystis aeruginosa. J Appl Phycol 21:701–706CrossRefGoogle Scholar
  9. 9.
    Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306CrossRefGoogle Scholar
  10. 10.
    Costa JAV, Colla LM, Filho PD (2003) Spirulina platensis growth in open raceway ponds using fresh water supplemented with carbon, nitrogen and metal ions. Z Naturforsch 58:76–80Google Scholar
  11. 11.
    Craggs RJ, McAuley PJ, Smith VJ (1997) Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res 31(7):1701–1707CrossRefGoogle Scholar
  12. 12.
    de-Bashan LE, Moreno M, Hernandez JP, Bashaan Y (2002) Removal of ammonium and phosphorus ions from synthetic wastewater by the microalgae Chlorella vulgaris coimmobilised in alginate beads with the microalgae growth-promoting bacterium Azospirillum brasilense. Water Res 36:2941–2948CrossRefGoogle Scholar
  13. 13.
    Demirbas A (1998) Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77:1117–1120CrossRefGoogle Scholar
  14. 14.
    Demirbas A (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manage 43:2349–2356CrossRefGoogle Scholar
  15. 15.
    Demirbas A (2003) Biodiesel fuels from vegetable oils via catalytic and non catalytic supercritical alcohol transesterifications and other methods: a survey. Energ Convers Manage 44:2093–2109. doi: 10.1016/S0196-8904(02)00234-0 CrossRefGoogle Scholar
  16. 16.
    Demirbas A (2008) Production of biodiesel from tall oil. Energy Sour Part A 30:1896–1902CrossRefGoogle Scholar
  17. 17.
    Demirbas A (2009) Production of biodiesel from algae oils. Energy Sour Part A 31:163–168. doi: 10.1080/15567030701521775 CrossRefGoogle Scholar
  18. 18.
    Desmorieux H, Decaen N (2006) Convective drying of spirulina in thin layer. J Food Eng 66(4):497–503CrossRefGoogle Scholar
  19. 19.
    Du W, Xu Y, Liu D, Zeng J (2004) Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J Mol Catal B Enzymat 30:125–129CrossRefGoogle Scholar
  20. 20.
    Eyster C (1958) Chloride Effect on the Growth of Chlorella pyrenoidosa. Nature 181:1141–1142CrossRefGoogle Scholar
  21. 21.
    Falkowski PG, Wyman K, Ley AC, Mauzerall DC (1986) Relationship of steady-state photosynthesis to fluorescence in eucaryotic algae. Biochim Biophys Acta 849:183–192CrossRefGoogle Scholar
  22. 22.
    Folkman Y, Wachs AM (1970) Filtration of Chlorella through Dune-Sand. Proc Am Soc Civil Eng, J Sanit Eng Div 96:675–690Google Scholar
  23. 23.
    Freedman B, Butterfield RO, Pryde EH (1986) Transesterification kinetics of soybean oil. JAOCS 63:1375–1380CrossRefGoogle Scholar
  24. 24.
    Furuta S, Matsuhashi H, Arata K (2004) Biodiesel fuel production with solid super acid catalysis in fixed bed reactor under atmospheric pressure. Catal Commun 5:721–723CrossRefGoogle Scholar
  25. 25.
    Gernaey KV, van Loosdrecht MCM, Henze M, Lind M, Jorgensen SB (2004) Activated sludge wastewater treatment plant modelling and simulation: state of the art. Environ Model Softw 19:763–783CrossRefGoogle Scholar
  26. 26.
    Green diesel (2009) http://www.green-diesel.co.za/info_standards.htm. Accessed 20 Oct 2009
  27. 27.
    Grima (1994) Comparison between extraction of lipids and fatty acids from microalgal biomass. JAOCS 71(9):955–959CrossRefGoogle Scholar
  28. 28.
    Grima ME, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20(7–8):491–515CrossRefGoogle Scholar
  29. 29.
    Grima ME, Acién Fernández FG, García Camacho F, Camacho Rubio F, Chisti Y (2000) Scale-up of tubular photobioreactors. J Appl Phycol 12:355–368CrossRefGoogle Scholar
  30. 30.
    Grobbelaar JU (2007) Photosynthetic characteristics of Spirulina platensis grown in commercial-scale open outdoor raceway ponds: what do the organisms tell us? J Appl Phycol 19:591–598CrossRefGoogle Scholar
  31. 31.
    Gryglewicz S (1999) Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresour Technol 70:249–253CrossRefGoogle Scholar
  32. 32.
    Gudin C, Therpenier C (1986) Bioconversion of solar energy into organic chemicals by microalgae. Adv Biotechnol Process 6:73–110Google Scholar
  33. 33.
    Hama S, Yamaji H, Kaieda M, Oda M, Kondo A, Fukuda H (2004) Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochem Eng J 21:155–160CrossRefGoogle Scholar
  34. 34.
    Harrison PJ, Berges JA (2005) Marine culture media. In: Andersen RA (ed) Algal culturing techniques. Elservier Academic press, LondonGoogle Scholar
  35. 35.
    Hsieh CH, Wu WT (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour Technol 100:3921–3926CrossRefGoogle Scholar
  36. 36.
    Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639CrossRefGoogle Scholar
  37. 37.
    Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106:4044–4098CrossRefGoogle Scholar
  38. 38.
    Kaplan D, Richmond AE, Dubinsky Z, Aaronson S (1986) Algal Nutrition. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press Inc, USAGoogle Scholar
  39. 39.
    Knothe G, Steidley KR (2005) Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel 84:1059–1065. doi: 10.1016/j.fuel.2005.01.016 CrossRefGoogle Scholar
  40. 40.
    Knothe G, Van Gerpen J, Krahl J (2005) The biodiesel handbook. AOCS, UrbanaCrossRefGoogle Scholar
  41. 41.
    Kolber Z, Falkowski PG (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665CrossRefGoogle Scholar
  42. 42.
    Kong Q, Li L, Martinez B, Chen P, Ruan R (2010) Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol 160:9–18CrossRefGoogle Scholar
  43. 43.
    Koopman B, Lincoln EP (1983) Autoflotation of algae from high-rate pond effluents. Agric Wastes 5(4):231–246CrossRefGoogle Scholar
  44. 44.
    Krawczyk T (1996) Biodiesel—alternative fuel makes inroads but hurdles remain. Inform 7:801–829Google Scholar
  45. 45.
    Kromkamp JC, Forster RM (2003) The use of variable fluorescence measurements in aquatic ecosystems: differences between multiple and single turnover measuring protocols and suggested terminology. Eur J Phycol 38:103–112CrossRefGoogle Scholar
  46. 46.
    Kromkamp J, Peene J (1999) Estimation of phytoplankton photosynthesis and nutrient limitation in the Eastern Scheldt estuary using variable fluorescence. Aquat Ecol 33:101–104CrossRefGoogle Scholar
  47. 47.
    Chung Kyong Hwan, Kim Jin, Lee Ki-Young (2009) Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts. Biomass Bioenergy 33(1):155–158CrossRefGoogle Scholar
  48. 48.
    Leach G, Oliveira G, Morais R (1998) Spray-drying of Dunaliella salina to produce abcarotene rich powder. J Ind Microbiol Biotechnol 20(2):82–85CrossRefGoogle Scholar
  49. 49.
    Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotech Prog 24(4):815–820Google Scholar
  50. 50.
    Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636CrossRefGoogle Scholar
  51. 51.
    Lima SAC, Raposo MFJ, Castro PML, Morais RM (2004) Biodegradation of p-chlorophenol by a microalgae consortium. Water Res 38:97–102CrossRefGoogle Scholar
  52. 52.
    Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15CrossRefGoogle Scholar
  53. 53.
    MacIntyre HL, Cullen JJ (1996) Primary production by suspended and benthic microalgae in a turbid estuary: time-scales of variability in San Antonio Bay. Tex Mar Ecol Prog Ser 145:245–268CrossRefGoogle Scholar
  54. 54.
    Marchetti JM, Miguel VU, Errazu AF (2007) Possible methods for biodiesel production. Renew Sustain Energy Rev 11:1300–1311CrossRefGoogle Scholar
  55. 55.
    Masojidek J, Koblizek M, Torzillo G (2004) Photosynthesis in microalgae. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford, pp 20–39Google Scholar
  56. 56.
    Meher LC, Vidya SD, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sust Energy Rev 10:248–268CrossRefGoogle Scholar
  57. 57.
    Mohn FH (1988) Harvesting of micro-algal biomass. In: Borowitzka LJ, Borowitzka MA (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 395–414Google Scholar
  58. 58.
    Muga HE, Mihelcic JR (2008) Sustainability of wastewater treatment technologies. J Environ Manage 88:437–447CrossRefGoogle Scholar
  59. 59.
    Mulaku WO, Nyanchanga EN (2004) Dissolved air flotation process for algae removal in surface water treatment in Kenya. J Civil Eng Res Pract 1(2):27–38Google Scholar
  60. 60.
    Mulbry W, Kondrad S, Buyer J (2008) Treatment of dairy and swine manure effluents using freshwater algae: fatty acid content and composition of algal biomass at different manure loading rates. J Appl Phycol 20:1079–1085CrossRefGoogle Scholar
  61. 61.
    Mutanda T, Karthikeyan S, Mustapha S, Bux F (2010) The utilisation of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella sp. under batch conditions. Biomass Bioenergy (in press)Google Scholar
  62. 62.
    Nindo CI, Tang J (2007) Refractance window dehydration technology: a novel contact drying method. Dry Technol 25:37–48CrossRefGoogle Scholar
  63. 63.
    Noue J, Laliberte G, Proulx D (1992) Algae and wastewater. J Appl Phycol 4:247–254CrossRefGoogle Scholar
  64. 64.
    Noureddini H, Gao X, Philkana RS (2005) Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour Technol 96:769–777CrossRefGoogle Scholar
  65. 65.
    Nurdogan Y, Oswald WJ (1996) Tube settling rate of high-rate pond algae. Water Sci Technol 33:229–241Google Scholar
  66. 66.
    Oda M, Kaieda M, Hama S, Yamaji H, Kondo A, Izumoto E, Fukuda H (2004) Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production. Biochem Eng J 23:45–51CrossRefGoogle Scholar
  67. 67.
    Olivier S, Scragg AH, Morrison J (2003) The effect of chlorophenols on the growth of Chlorella VT-1. Enzym Microb Technol 32:837–842CrossRefGoogle Scholar
  68. 68.
    Oswald WJ, Lee EW, Adan B, Yao KH (1978) New wastewater treatment method yields a harvest of saleable algae. WHO Chron 32:348–350Google Scholar
  69. 69.
    Paul PFM, Wise WS (1971) The principle of gas extraction. Mills Boon, LondonGoogle Scholar
  70. 70.
    Prakash J, Pushparaj B, Carlozzi P, Torzillo G, Montaini E, Materassi R (1997) Microalgal biomass drying by a simple solar device. Int J Solar Energy 18(4):303–311CrossRefGoogle Scholar
  71. 71.
    Pushparaj B, Pelosi E, Tredici MR, Pinzani E, Materassi R (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J Appl Phycol 9:113–119CrossRefGoogle Scholar
  72. 72.
    Ramdhani N, Bux F (2007) Functional characterization of heterotrophic denitrifying bacteria in activated sludge. S Afr J Sci 103:113–116Google Scholar
  73. 73.
    Ramesh D, Samapathrajan A, Venkatachalam P (2005) Pilot biodiesel plant for vegetable oils. Periyar J Res Dev 3(1):15–19Google Scholar
  74. 74.
    Ramesh D, Samapathrajan A, Joshua Davidson S (2005) Fuel properties of palm oil and its biodiesel production. Periyar J Res Dev 2(3):25–29Google Scholar
  75. 75.
    Reid EE (1911) Studies in esterification. IV. The interdependence of limits as exemplified in the transformation of esters. Am Chem J 45:479–516Google Scholar
  76. 76.
    Republic of South Africa (1998) National Water Act. Act No 36 of 1998Google Scholar
  77. 77.
    Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, OxfordGoogle Scholar
  78. 78.
    Ryll T, Dutina G, Reyes A, Gunson J, Krummen L, Etcheverry T (2000) Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: Characterization of separation efficiency and impact of perfusion on product quality. Biotechnol Bioengng 69:440–449CrossRefGoogle Scholar
  79. 79.
    Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272CrossRefGoogle Scholar
  80. 80.
    Serodio J, Vieira S, Cruz S, Barroso F (2005) Short-term variability in the photosynthetic activity of microphytobenthos as detected by measuring rapid light curves using variable fluorescence. Mar Biol 146:903–914CrossRefGoogle Scholar
  81. 81.
    Sheehan J, Camobreco V, Duffield J, Graboski M, Shapouri H (1998) Life cycle inventory of biodiesel and petroleum diesel for use in an urban Bus. Final Report NREL/SR-580-24089. National Renewable Energy Laboratory, Golden, ColoradoGoogle Scholar
  82. 82.
    Shelef GA, Sukenik A, Green M (1984) Microalgae harvesting and processing: a literature review report. Solar Energy Research Institute, Golden Colorado, SERI/STR-231-2396Google Scholar
  83. 83.
    Shieh CJ, Liao HF, Lee CC (2003) Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresour Technol 88:103–106CrossRefGoogle Scholar
  84. 84.
    Simmons MS, Sivaborvorn K (1979) Effects of chlorinated organics from wastewater treatment on algal growth. Bull Environ Contam Toxicol 23:766–773CrossRefGoogle Scholar
  85. 85.
    Sidat M, Kasan HC, Bux F (1999) Laboratory scale investigation of biological phosphate removal from municipal wastewater. Water SA 25(4):459–462Google Scholar
  86. 86.
    Srivastava A, Prasad R (2000) Triglycerides-based diesel fuels. J Renew Sustain Energy Rev 4:111–133CrossRefGoogle Scholar
  87. 87.
    Teixeira MR, Rosa MJ (2006) Comparing dissolved air flotation and conventional sedimentation to remove cyanobacterial cells of Microcystis aeruginosa. Part 1: the key operating conditions. Sep Purif Technol 52(1):84–94CrossRefGoogle Scholar
  88. 88.
    Torzillo G, Bernardini P, Masojidek J (1998) On-line monitoring of chlorophyll fluorescence to assess the extent of photoinhibition of photosynthesis induced by high oxygen concentration and low temperature and its effects on the productivity of outdoor cultures of Spirulina platensis (Cyanobacteria). J Phycol 34:504–510CrossRefGoogle Scholar
  89. 89.
    Valderramma LT, Campo CMD, Rodriguez CM, de-Bashan LE, Bashan Y (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemma minuscule. Water Res 36:4185–4192CrossRefGoogle Scholar
  90. 90.
    Van Gerpen J, Shanks B, Pruszko R, Clements D and Knothe G (2004) Biodiesel production technology. National Renewable Energy Laboratory. 1617 Cole Boulevard, Golden, CO. Paper contract No. DE-AC36-99-GO10337Google Scholar
  91. 91.
    Venkataraman LV (1978) New possibility for microalgae production and utilisation in India. Arch Hydrobiol Beih 11:199–210Google Scholar
  92. 92.
    Vonshak A (1997) Spirulina: growth, physiology and biochemisty. In: Vonshak A (ed) Spirulina platensis (Arthrospira): physiology, cell-biology and biochemistry. Taylor & Francis, London, pp 43–65Google Scholar
  93. 93.
    Wang B, Li Y, Wu N, Lan CQ (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79(5):707–718CrossRefGoogle Scholar
  94. 94.
    Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40(1):13–20CrossRefGoogle Scholar
  95. 95.
    Wijffels RH (2007) Potential of sponges and microalgae for marine biotechnology. Trends Biotechnol 26(1):26–31CrossRefGoogle Scholar
  96. 96.
    Miao Xiaoling, Li Rongxiu, Yao Hongyan (2009) Effective acid-catalyzed transesterification for biodiesel production. Energy Convers Manage 50(10):2680–2684CrossRefGoogle Scholar
  97. 97.
    Xu H, Miao XL, Wu QY (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRefGoogle Scholar
  98. 98.
    Zhang Y, Dub MA, McLean DD, Kates M (2003) Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol 90:229–240CrossRefGoogle Scholar
  99. 99.
    Zhou W, Boocock DBG (2006) Phase behavior of the base-catalyzed transesterification of soybean oil. JAOCS 83:1041–1045. doi: 10.1007/s11746-006-5160-5 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Biotechnology and Food TechnologyCentre for Water and Wastewater Technology, Durban University of TechnologyDurbanSouth Africa
  2. 2.Department of Nature ConservationMangosuthu University of TechnologyDurbanSouth Africa

Personalised recommendations