Advertisement

Estimating the Accuracy of Multiple Alignments and its Use in Parameter Advising

  • Dan F. DeBlasio
  • Travis J. Wheeler
  • John D. Kececioglu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7262)

Abstract

We develop a novel and general approach to estimating the accuracy of protein multiple sequence alignments without knowledge of a reference alignment, and use our approach to address a new problem that we call parameter advising. For protein alignments, we consider twelve independent features that contribute to a quality alignment. An accuracy estimator is learned that is a polynomial function of these features; its coefficients are determined by minimizing its error with respect to true accuracy using mathematical optimization. We evaluate this approach by applying it to the task of parameter advising: the problem of choosing alignment scoring parameters from a collection of parameter values to maximize the accuracy of a computed alignment. Our estimator, which we call Facet (for “feature-based accuracy estimator”), yields a parameter advisor that on the hardest benchmarks provides more than a 20% improvement in accuracy over the best default parameter choice, and outperforms the best prior approaches to selecting good alignments for parameter advising.

Keywords

Integer Linear Program Structural Alignment Accuracy Estimator Parameter Choice Balance Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahola, V., Aittokallio, T., Vihinen, M., Uusipaikka, E.: Model-based prediction of sequence alignment quality. Bioinformatics 24(19), 2165–2171 (2008)CrossRefGoogle Scholar
  2. 2.
    Balaji, S., Sujatha, S., Kumar, S.S.C., Srinivasan, N.: PALI: a database of alignments and phylogeny of homologous protein structures. NAR 29(1), 61–65 (2001)CrossRefGoogle Scholar
  3. 3.
    Edgar, R.C.: http://www.drive5.com/bench (2009)
  4. 4.
    Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology 292, 195–202 (1999)CrossRefGoogle Scholar
  5. 5.
    Kim, E., Kececioglu, J.: Learning scoring schemes for sequence alignment from partial examples. IEEE/ACM Trans. Comp. Biol. Bioinf. 5(4), 546–556 (2008)CrossRefGoogle Scholar
  6. 6.
    Kim, J., Ma, J.: PSAR: measuring multiple sequence alignment reliability by probabilistic sampling. Nucleic Acids Research 39(15), 6359–6368 (2011)CrossRefGoogle Scholar
  7. 7.
    Landan, G., Graur, D.: Heads or tails: a simple reliability check for multiple sequence alignments. Molecular Biology and Evolution 24(6), 1380–1383 (2007)CrossRefGoogle Scholar
  8. 8.
    Lassmann, T., Sonnhammer, E.L.L.: Automatic assessment of alignment quality. Nucleic Acids Research 33(22), 7120–7128 (2005)CrossRefGoogle Scholar
  9. 9.
    Pei, J., Grishin, N.V.: AL2CO: calculation of positional conservation in a protein sequence alignment. Bioinformatics 17(8), 700–712 (2001)CrossRefGoogle Scholar
  10. 10.
    Penn, O., Privman, E., Landan, G., Graur, D., Pupko, T.: An alignment confidence score capturing robustness to guide tree uncertainty. MBE 27(8), 1759–1767 (2010)CrossRefGoogle Scholar
  11. 11.
    Thompson, J.D., Plewniak, F., Ripp, R., Thierry, J.C., Poch, O.: Towards a reliable objective function for multiple sequence alignments. JMB 314, 937–951 (2001)CrossRefGoogle Scholar
  12. 12.
    Wheeler, T.J., Kececioglu, J.D.: Multiple alignment by aligning alignments. Bioinformatics 23, i559–i568 (2007); Proceedings of the 15th ISMBGoogle Scholar
  13. 13.
    Wheeler, T.J., Kececioglu, J.D.: Opal: software for aligning multiple biological sequences. Version 2.1.0 (January 2012), http://opal.cs.arizona.edu

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dan F. DeBlasio
    • 1
  • Travis J. Wheeler
    • 2
  • John D. Kececioglu
    • 1
  1. 1.Department of Computer ScienceThe University of ArizonaUSA
  2. 2.Howard Hughes Medical InstituteUSA

Personalised recommendations