FRIDAL: A Desktop Search System Based on Latent Interfile Relationships

  • Tetsutaro Watanabe
  • Takashi Kobayashi
  • Haruo Yokota
Part of the Communications in Computer and Information Science book series (CCIS, volume 170)


Desktop search is must-have features for modern operationg systems because retrieving desired files from massive amount of files is a major problem. Several desktop search tools using full-text search techniques have been developed. However, those files lacking any given keywords, such as picture files and the source data of experiments, cannot be found by tools based on full-text searches, even if they are related to the keywords. In this paper, we propose a search method based on latent interfile relationships derieved from file access logs. Our proposed method allows us retrieve files that lack keywords but do have an association with them, based on the concept that those files opened by a user in a particular time period are related. We have implemented a desktop search system “FRIDAL” based on the proposed method, and evaluated its effectiveness by experiment. The evaluation results indicate that the proposed method has superior precision and recall compared with full-text and directory-search methods.


Directory Search Search Request Operating System Principle Relationship Element Superior Precision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, N., Bolosky, W.J., Douceur, J.R., Lorch, J.R.: A five-year study of file-system metadata. ACM Transactions on Storage 3(3) (2007)Google Scholar
  2. 2.
    Barreau, D., Nardi, B.A.: Finding and reminding – file organization from the desktop. ACM SIGCHI Bulletin 27(3), 39–43 (1995)CrossRefGoogle Scholar
  3. 3.
    Blanc-Brude, T., Scapin, D.L.: What do people recall about their documents?: Implications for desktop search tools. In: Proc. Intl’ Conf. on Intelligent User Interfaces (IUI 2007), pp. 102–111 (2007)Google Scholar
  4. 4.
    Chen, J., Guo, H., Wu, W., Xie, C.: Search your memory! - an associative memory based desktop search system. In: Proc. SIGMOD 2009, pp. 1099–1101 (2009)Google Scholar
  5. 5.
    Chirita, P.A., Gaugaz, J., Costache, S., Nejdl, W.: Desktop context detection using implicit feedback. In: Proc. SIGIR 2006 Workshop on Personal Information Management, pp. 24–27 (2006)Google Scholar
  6. 6.
    Chirita, P.A., Gavriloaie, R., Ghita, S., Nejdl, W., Paiu, R.: Activity Based Metadata for Semantic Desktop Search. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 439–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Chirita, P.-A., Nejdl, W.: Analyzing User Behavior to Rank Desktop Items. In: Crestani, F., Ferragina, P., Sanderson, M. (eds.) SPIRE 2006. LNCS, vol. 4209, pp. 86–97. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Cohen, S., Domshlak, C., Zwerdling, N.: On ranking techniques for desktop search. ACM Transactions on Information Systems 26 (2008)Google Scholar
  9. 9.
    Dumais, S., Cutrell, E., Cadiz, J.J., Jancke, G., Sarin, R., Robbins, D.C.: Stuff i’ve seen: A system for personal information retrieval and re-use. In: Proc. SIGIR 2003, pp. 72–79 (2003)Google Scholar
  10. 10.
    Fertig, S., Freeman, E., Gelernter, D.: ”finding and reminding” reconsidered. ACM SIGCHI Bulletin 28(1), 66–69 (1996)CrossRefGoogle Scholar
  11. 11.
    Freeman, E., Gelernter, D.: Lifestreams: A storage model for personal data. ACM SIGMOD Bulletin 25, 80–86 (1996)CrossRefGoogle Scholar
  12. 12.
    Gifford, D.K., Jouvelot, P., Sheldon, M.A., James, W., O’Toole, J.: Semantic file systems. In: Proc. ACM Symposium on Operating Systems Principles, pp. 16–25 (1991)Google Scholar
  13. 13.
    Hayes, B.: Terabyte territory. American Scientist 90(3), 212–216 (2002)Google Scholar
  14. 14.
    Matsubara, Y., Kobayashi, I.: Development of a desktop search system using correlation between user’s schedule and data in a computer. In: Proc. WI-IATW 2007, pp. 235–238 (2007)Google Scholar
  15. 15.
    Nejd, W., Paiu, R.: Desktop search – how contextual information influences search results and rankings. In: Proc. ACM SIGIR 2005 Workshop on Information Retrieval in Context (IRiX), pp. 29–32 (2005)Google Scholar
  16. 16.
    Ohsawa, R., Takashio, K., Tokuda, H.: Oredesk: A tool for retrieving data history based on user operations. In: Proc. Eighth IEEE International Symposium on Multimedia (ISM 2006), pp. 762–765 (2006)Google Scholar
  17. 17.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: Bringing order to the web. TR 1999-66, Stanford InfoLab (1999)Google Scholar
  18. 18.
    Rekimoto, J.: Timemachine computing: A timecentric approach for the information environment. In: Proc. ACM UIST 1999 (1999)Google Scholar
  19. 19.
    Soules, C.A., Ganger, G.R.: Connections: Using context to enhance file search. In: Proc. ACM Symposium on Operating Systems Principles, pp. 119–132 (2005)Google Scholar
  20. 20.
    Watanabe, T., Kobayashi, T., Yokota, H.: A method for searching keyword-lacking files based on interfile relationships. In: Proc. 16th Intl’ Conf. on Cooperative Information Systems (CoopIS 2008). pp. 14–15 (2008)Google Scholar
  21. 21.
    Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search and browsing, In: Proc. CHI 2003. pp. 401–408 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tetsutaro Watanabe
    • 1
  • Takashi Kobayashi
    • 2
  • Haruo Yokota
    • 1
  1. 1.Graduate School of Information Science and EngineeringTokyo Institute of TechnologyJapan
  2. 2.Graduate School of Information ScienceNagoya UniversityJapan

Personalised recommendations