Terahertz Scattering

Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 171)

Abstract

Terahertz (THz) Time Domain Spectroscopy (TDS) measurements have the unique ability to detect both the amplitude and phase of the electric field, simultaneously. This eliminates complications introduced by Kramers–Kronig relations typically used in near-infrared spectroscopy. Many materials of interest contain resonant features in their refractive indices in the far-infrared (THz) spectrum, while their packaging materials are generally transparent. Thus, an important application for THz TDS is the ability to see inside packaging materials and detect the material features of their contents. Such applications are promising for security screening (concealed drugs, explosives, etc.) in post offices and airports as well as for non-destructive evaluation (NDE) of products on an assembly line or tissue damage due to burns or cancer [1, 2, 3, 4, 5, 6].

Keywords

Scattered Field Finite Difference Time Domain Diffuse Scattering Pair Distribution Function Kirchhoff Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    K. Kawase, Y. Ogawa, Y. Watanabe, H. Inoue, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    M.C. Kemp, P.F. Taday, B.E. Cole, J.A. Cluff, A.J. Fitzgerald, W.R. Tribe, in Security applications of terahertz technology, Proceedings of SPIE The International Society for Optical Engineering, (2003), vol. 5070, pp. 44–52Google Scholar
  3. 3.
    W.R. Tribe, D.A. Newnham, P.F. Taday, M.C. Kemp, in Hidden object detection: security applications of terahertz technology. Proceedings of SPIE The International Society for Optical Engineering, (2004), vol. 5354, pp. 168–176Google Scholar
  4. 4.
    D.L. Woolard, E.R. Brown, M. Pepper, M. Kemp, Terahertz frequency sensing and imaging: a time of reckoning future applications? Proc. IEEE. 93(10), 1722–1743 (2005)Google Scholar
  5. 5.
    K. Yamamoto, M. Yamaguchi, F. Miyamaru, M. Tani, M. Hangyo, T. Ikeda, A. Matsushita, K. Koide, M. Tatsuno, Y. Minami, Noninvasive inspection of C-4 explosive in mails by terahertz time-domain spectroscopy. Jpn. J. Appl. Phys. Part 2 Lett. 433B, 414–417, (2004)Google Scholar
  6. 6.
    X.-C. Zhang, Terahertz wave imaging: horizons and hurdles. Phys. Med. Biol. 47(21), 3667–3677 (2002)CrossRefGoogle Scholar
  7. 7.
    Y. Dikmelik, J.B. Spicer, M.J. Fitch, R. Osiander, Effects of surface roughness on reflection spectra obtained by terahertz time-domain spectroscopy. Opt. Lett. 31(24), 3653–3655 (2006)Google Scholar
  8. 8.
    M. Ortolani, J.S. Lee, U. Schade, H.W. Hubers, Surface roughness effects on the terahertz reflectance of pure explosive materials. Appl. Phys. Lett. 93(8), 081906 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    L.M. Zurk, B. Orlowski, G. Sundberg, Z. Zhou, A. Chen, in Terahertz scattering from a Rough Granular Surface, IEEE Antennas and Propagation Society, APS International Symposium (Digest), (2007), pp. 4929–4932Google Scholar
  10. 10.
    L.M. Zurk, G. Sundberg, S. Schecklman, Z. Zhou, A. Chen, E.I. Thorsos, in Scattering effects in terahertz reflection spectroscopy. Proceedings of SPIE The International Society for Optical Engineering, (2008), vol. 6949, 694907Google Scholar
  11. 11.
    H. Zhong, A. Redo-Sanchez, X.-C. Zhang, Identification and classification of chemicals using terahertz reflective spectroscopic focalplane imaging system. Opt. Express 14(20), 9130–9141 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    H. Zhong, Terahertz Wave Reflective Sensing and Imaging. PhD Thesis, Rensselaer Polytechnic Institute, 2006Google Scholar
  13. 13.
    H. Zhong, A. Redo-Sanchez, X.-C. Zhang, Standoff sensing and imaging of explosive related chemical and bio-chemical materials using thz-tds. Int. J. High Speed Electron. Syst. 17(2), 239–249 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Mickan, X.-C. Zhang, T-ray sensing and imaging. Int. J. High Speed Electron. Syst. 13(2), 601–676 (2003)CrossRefGoogle Scholar
  15. 15.
    M.R. Leahy-Hoppa, M.J. Fitch, and R.Osiander, in Terahertz reflection spectroscopy for the detection of explosives, Proceedings of SPIE The International Society for Optical Engineering, (2008), vol. 6893, pp. 689305Google Scholar
  16. 16.
    M. Born, E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1980)Google Scholar
  17. 17.
    G.P. Kniffin, S. Schecklmana, J. Chen, S.C. Henry, L.M. Zurk, B. Pejcinovic, A.I. Timchenko, in Measurement and modeling of terahertz spectral signatures from layered material, Proceedings of SPIE The International Society for Optical Engineering, Terahertz Technology and Applications III, (2010), vol. 7601Google Scholar
  18. 18.
    P. Beckmann, A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Artech House Inc, Norwood, 1987)Google Scholar
  19. 19.
    F.T. Ulaby, R.K. Moore, A.K. Fung, Microwave remote sensing: active and passive, vol. 2 (Addison-Wesley, Advanced Book Program/World Science Division, Reading MA, 1986)Google Scholar
  20. 20.
    L. Tsang, J.A. Kong, R.T. Shin, Theory of Microwave Remote Sensing (Wiley, New York, 1985)Google Scholar
  21. 21.
    L. Tsang, J.A. Kong, K.H. Ding, Scattering of Electromagnetic Waves Numerical Simulations (Wiley, New York, 2001)CrossRefGoogle Scholar
  22. 22.
    A. Taflove, S. Hagness, Computational Electrodynamics The Finite- Difference Time-Domain Method (Artech House Inc, Norwood, 2005)Google Scholar
  23. 23.
    G. Sundberg, L.M. Zurk, S. Schecklman, S. Henry, Modeling rough surface and granular scattering at terahertz frequencies using the finite-difference time-domain method. IEEE Trans. Geosci. Remote Sens. 48, 3709–3719 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    S. Henry, G. Kniffin, S. Schecklman, L. Zurk, A. Chen, in Measurement and modeling of rough surface effects on terahertz spectroscopy and imaging, Proceedings of SPIE—The International Society for Optical Engineering, (2010), p. 7601Google Scholar
  25. 25.
    C. Konek, J. Wilkinson, O. Esenturk, E. Heilweil, M. Kemp, in Terahertz spectroscopy of explosives and simulants—rdx, petn, sugar and l-tartaric acid, Proceedings of SPIE—The International Society for, Optical Engineering, (2009), vol. 7311Google Scholar
  26. 26.
    L.M. Zurk, S.C. Henry, S. Schecklman, D.D. Duncan, Physics-based processing for terahertz reflection spectroscopy and imaging, Proceedings of SPIE The International Society for Optical Engineering Infrared, Millimeter Wave, and Terahertz Technologies, (2010), vol. 7854Google Scholar
  27. 27.
    S. Schecklman, L.M. Zurk, S.C. Henry, G. P. Kniffin, Terahertz material detection from diffuse surface scattering, J. Appl. Phys. 109(9) (2011)Google Scholar
  28. 28.
    L. Tsang, J.A. Kong, K.H. Ding, Scattering of Electromagnetic Waves, Theories and Applications (Wiley, New York, 2000)CrossRefGoogle Scholar
  29. 29.
    P.C. Waterman, Matrix formulation of electromagnetic scattering. Proc. IEEE 53, 80512 (1965)CrossRefGoogle Scholar
  30. 30.
    P.C. Waterman, Symmetry, unitarity, and geometry in electromagnetic scattering. Phys Rev D 3, 82539 (1971)CrossRefGoogle Scholar
  31. 31.
    M.I. Mishcenko, L.D. Travis, D.W. Mackowski, T-matrix method and its applications to electromagnetic scattering by particles: A current perspective. J. Quan. Spec.& Rad. Trans. 111, 1700–1703 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    C.F. Bohren, D.F. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1998)CrossRefGoogle Scholar
  33. 33.
    H.C. van de Hulst, Light Scattering by Small Particles (Dover Publications, New York, 1981)Google Scholar
  34. 34.
    L.M. Zurk, B. Orlowski, D.P. Winebrenner, E.I. Thorsos, M. Leahy-Hoppa, M.R. Hayden, Terahertz scattering from granular material. J. Opt. Soc. Am. B: Opt. Phys. 24(9), 2238–2243 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    K.H. Ding, L.M. Zurk, L. Tsang, Pair distribution functions and attenuation rates for sticky particles in dense media. J. Electromagnet. Waves Appl. v 8(12), 1585–1604 (1994)Google Scholar
  36. 36.
    L.M. Zurk, L. Tsang, K.H. Ding, D.P. Winebrenner, Monte Carlo simulations of the extinction rate of densely packed spheres with clustered and non-clustered geometries. J. Opt. Soc. Am. 12, 1772–1781 (1995)ADSCrossRefGoogle Scholar
  37. 37.
    K.S. Yee, Numerical solutions of initial boundary value problems involving maxwells equations in isotropic media, IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Electrical and Computer Engineering DepartmentPortland State UniversityPortlandUSA

Personalised recommendations