Complex Refractive Index Determination Using Planar and Converging Beam Transfer Functions

  • Vasilis Apostolopoulos
  • Geoff Daniell
  • Aaron Chung
Part of the Springer Series in Optical Sciences book series (SSOS, volume 171)


Terahertz time domain spectroscopy can help us to determine the complex refractive index of materials. To achieve this a theoretical model of the spectrometer has to be implemented; a usual method for refractive index determination is to fit a theoretically calculated transfer function to the experimental data. Material parameter extraction models based on transfer functions can be of varying complexity based on the requirements for accuracy and also the difficulty of factoring all experimental parameters. Here, we are going to show how algorithms based on transfer functions with different complexity can be setup. It will be described how a transfer function can be used to extract the refractive index of material and the key stages of the analysis, the fitting algorithm, and the need for phase unwrapping. Transfer functions of an increasing complexity will be shown, with and without the etalon term, using planar or converging beam.


Refractive Index Transfer Function Extraction Algorithm Complex Refractive Index Angular Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    L. Duvillaret, F. Garet, J. Coutaz, IEEE J. Sel. Top. Quant. 2, 739–746 (1996)Google Scholar
  2. 2.
    L. Duvillaret, F. Garet, J. Coutaz, Appl. Opt. 38, (1999)Google Scholar
  3. 3.
    T. Dorney, R. Baraniuk, D. Mittleman, J. Opt. Soc. Am. A 18, 1562–1571 (2001)Google Scholar
  4. 4.
    L. Duvillaret, F. Garet, J. Roux, J. Coutaz, IEEE J. Sel. Top. Quant. 7, 615–623 (2001)Google Scholar
  5. 5.
    E.P.J. Parrott, J.A. Zeitler, L.F. Gladden, Opt. Lett. 34(23), 3722–3724 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    E.P.J. Parrott, J.A. Zeitler, L.F. Gladden, S.N. Taraskin, S.R. Elliott, J. Non-Cryst. Solids 355(37–42), 1824–1827 (2009)Google Scholar
  7. 7.
    W. Withayachumnankul, B. Ferguson, T. Rainsford, S. Mickan, D. Abbott, Electron. Lett. 41, 14 (2005)Google Scholar
  8. 8.
    A. Bitzer, H. Heim, M. Walther, IEEE J. Sel. Top. Quant. 14(2), 476–481 (2008)CrossRefGoogle Scholar
  9. 9.
    A. Bitzer, M. Walther, A. Kern, S. Gorenflo, H. Helm. Appl. Phys. Lett. 90(7) (2007)Google Scholar
  10. 10.
    M.T. Reiten, S.A. Harmon, R.A. Cheville, J. Opt. Soc. Am. B-Opt. Phys. 20(10), 2215–2225 (2003)Google Scholar
  11. 11.
    Z.P. Jiang, X.C. Zhang, Opt. Express 5(11), 243–248 (1999)Google Scholar
  12. 12.
    J.W. Bowen, G.C. Walker, S. Hadjiloucas, E. Berry, Conference Digest of the 2004 Joint 29th International Conference on Infrared and Millimeter Waves and 12th International Conference on Terahertz Electronics, vol. 842, pp. 551–552 (2004)Google Scholar
  13. 13.
    M.R. Stringer, M. Naftaly, N. Marakgos, R.E. Miles, E. Linfield, A.G. Davies, IRMMW-THz2005: The Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, vols. 1 and 2, 421–422, 660 (2005)Google Scholar
  14. 14.
    A.L. Chung, Z. Mihoubi, G.J. Daniell, A.H. Quarterman, K.G. Wilcox, H.E. Beere, D.A. Ritchie, A.C. Tropper, V. Apostolopoulos, Presented at the 2010 35th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2010)Google Scholar
  15. 15.
    P. Kuzel, H. Nemec, F. Kadlec, C. Kadlec, Opt. Express 18(15), 15338–15348 (2010)CrossRefGoogle Scholar
  16. 16.
    J.A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941)zbMATHGoogle Scholar
  17. 17.
    P.U. Jepsen, S.R. Keiding, Opt. Lett. 20(8), 807–809 (1995)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Vasilis Apostolopoulos
    • 1
  • Geoff Daniell
    • 1
  • Aaron Chung
    • 1
  1. 1.Physics and AstronomyUniversity of SouthamptonSouthamptonUK

Personalised recommendations