Immunological Methods for Staphylococcus aureus Infection Diagnosis and Prevention

  • Nathan K. Archer
  • J. William Costerton
  • Jeff G. Leid
  • Mark E. Shirtliff
Part of the Springer Series on Biofilms book series (BIOFILMS, volume 7)


Increasing attention has been focused on understanding, diagnosing, and treating nonculturable bacterial infections. In this chapter, we explore the current immunological methods for diagnosis and prevention of recalcitrant biofilm-associated nonculturable infections in the context of the Gram-positive cocci, Staphylococcus aureus. In addition, we discuss immune evasion strategies of S. aureus in the perspective of bacteria and host, and the laboratory techniques utilized for translational research and vaccine development.


Immunological Method Quadrivalent Vaccine Nasal Colonization Immunogenic Antigen Lateral Flow Immunoassay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akira S (1999) Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17:138–146PubMedCrossRefGoogle Scholar
  2. Anwar S, Prince LR, Foster SJ, Whyte MK, Sabroe I (2009) The rise and rise of Staphylococcus aureus: laughing in the face of granulocytes. Clin Exp Immunol 157:216–224PubMedCrossRefGoogle Scholar
  3. Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052PubMedCrossRefGoogle Scholar
  4. Boyd A, Chakrabarty AM (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 60:2355–2359PubMedGoogle Scholar
  5. Brady RA, Leid JG, Camper AK, Costerton JW, Shirtliff ME (2006) Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74:3415–3426PubMedCrossRefGoogle Scholar
  6. Brady RA, Leid JG, Kofonow J, Costerton JW, Shirtliff ME (2007) Immunoglobulins to surface-associated biofilm immunogens provide a novel means of visualization of methicillin-resistant Staphylococcus aureus biofilms. Appl Environ Microbiol 73:6612–6619PubMedCrossRefGoogle Scholar
  7. Brady RA, O’May GA, Leid JG et al (2011) Resolution of Staphylococcus aureus biofilm infection using vaccination and antibiotic treatment. Infect Immun 79:1797–1803PubMedCrossRefGoogle Scholar
  8. Broughan J, Anderson R, Anderson AS (2011) Strategies for and advances in the development of Staphylococcus aureus prophylactic vaccines. Expert Rev Vaccines 10:695–708PubMedCrossRefGoogle Scholar
  9. Chan WC, Coyle BJ, Williams P (2004) Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. J Med Chem 47:4633–4641PubMedCrossRefGoogle Scholar
  10. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745PubMedCrossRefGoogle Scholar
  11. Ferguson BJ, Stolz DB (2005) Demonstration of biofilm in human bacterial chronic rhinosinusitis. Am J Rhinol 19:452–457PubMedGoogle Scholar
  12. Fong WK, Modrusan Z, McNevin JP et al (2000) Rapid solid-phase immunoassay for detection of methicillin-resistant Staphylococcus aureus using cycling probe technology. J Clin Microbiol 38:2525–2529PubMedGoogle Scholar
  13. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3:948–958PubMedCrossRefGoogle Scholar
  14. Gjodsbol K, Christensen JJ, Karlsmark T et al (2006) Multiple bacterial species reside in chronic wounds: a longitudinal study. Int Wound J 3:225–231PubMedCrossRefGoogle Scholar
  15. Hansson C, Hoborn J, Möller A, Swanbeck G (1995) The microbial flora in venous leg ulcers without clinical signs of infection. Repeated culture using a validated standardised microbiological technique. Acta Derm Venereol 75:24–30PubMedGoogle Scholar
  16. Harro JM, Peters BM, O’May GA et al (2010) Vaccine development in Staphylococcus aureus: taking the biofilm phenotype into consideration. FEMS Immunol Med Microbiol 59:306–323PubMedGoogle Scholar
  17. Hussain M, Wilcox MH, White PJ (1993) The slime of coagulase-negative staphylococci: biochemistry and relation to adherence. FEMS Microbiol Rev 10:191–207PubMedGoogle Scholar
  18. Klein E, Smith DL, Laxminarayan R (2007) Hospitalizations and deaths caused by methicillin-resistant Staphylococcus aureus, United States, 1999–2005. Emerg Infect Dis 13:1840–1846PubMedCrossRefGoogle Scholar
  19. Kluytmans J, van Belkum A, Verbrugh H (1997) Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms, and associated risks. Clin Microbiol Rev 10:505–520PubMedGoogle Scholar
  20. Lederer SR, Riedelsdorf G, Schiffl H (2007) Nasal carriage of methicillin resistant Staphylococcus aureus: the prevalence, patients at risk and the effect of elimination on outcomes among outclinic haemodialysis patients. Eur J Med Res 12:284–288PubMedGoogle Scholar
  21. Leid JG, Shirtliff ME, Costerton JW, Stoodley P (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70:6339–6345PubMedCrossRefGoogle Scholar
  22. Lew DP, Waldvogel FA (2004) Osteomyelitis. Lancet 364:369–379PubMedCrossRefGoogle Scholar
  23. Middleton JR (2008) Staphylococcus aureus antigens and challenges in vaccine development. Expert Rev Vaccines 7:805–815PubMedCrossRefGoogle Scholar
  24. Morell EA, Balkin DM (2010) Methicillin-resistant Staphylococcus aureus: a pervasive pathogen highlights the need for new antimicrobial development. Yale J Biol Med 83:223–233PubMedGoogle Scholar
  25. National Nosocomial Infections Surveillance (1999) National Nosocomial Infections Surveillance (NNIS) System report, data summary from January 1990–May 1999, issued June 1999. Am J Infect Control 27:520–532CrossRefGoogle Scholar
  26. Noskin GA, Rubin RJ, Schentag JJ et al (2008) Budget impact analysis of rapid screening for Staphylococcus aureus colonization among patients undergoing elective surgery in US hospitals. Infect Control Hosp Epidemiol 29:16–24PubMedCrossRefGoogle Scholar
  27. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564PubMedCrossRefGoogle Scholar
  28. Prabhakara R, Harro JM, Leid JG, Harris M, Shirtliff ME (2011a) Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infect Immun 79:1789–1796PubMedCrossRefGoogle Scholar
  29. Prabhakara R, Harro JM, Leid JG et al (2011b) Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin resistant Staphylococcus aureus. Infect Immun 79:5010–5018PubMedCrossRefGoogle Scholar
  30. Resch A, Leicht S, Saric M et al (2006) Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6:1867–1877PubMedCrossRefGoogle Scholar
  31. Rothfork JM, Dessus-Babus S, Van Wamel WJ, Cheung AL, Gresham HD (2003) Fibrinogen depletion attenuates Staphylococcus aureus infection by preventing density-dependent virulence gene up-regulation. J Immunol 171:5389–5395PubMedGoogle Scholar
  32. Rubin RJ, Harrington CA, Poon A et al (1999) The economic impact of Staphylococcus aureus infection in New York City hospitals. Emerg Infect Dis 5:9–17PubMedCrossRefGoogle Scholar
  33. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154PubMedCrossRefGoogle Scholar
  34. Stephenson MF, Mfuna L, Dowd SE et al (2010) Molecular characterization of the polymicrobial flora in chronic rhinosinusitis. J Otolaryngol Head Neck Surg 39:182–187PubMedGoogle Scholar
  35. Stranger-Jones YK, Bae T, Schneewind O (2006) Vaccine assembly from surface proteins of Staphylococcus aureus. Proc Natl Acad Sci USA 103:16942–16947PubMedCrossRefGoogle Scholar
  36. Thomas D, Chou S, Dauwalder O, Lina G (2007) Diversity in Staphylococcus aureus enterotoxins. Chem Immunol Allergy 93:24–41PubMedCrossRefGoogle Scholar
  37. Wenzel RP, Edmond MB (2001) The impact of hospital-acquired bloodstream infections. Emerg Infect Dis 7:174–177PubMedCrossRefGoogle Scholar
  38. Wertheim HF, Melles DC, Vos MC et al (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nathan K. Archer
    • 1
    • 2
  • J. William Costerton
    • 3
  • Jeff G. Leid
    • 4
  • Mark E. Shirtliff
    • 1
    • 5
  1. 1.Department of Microbial Pathogenesis, School of DentistryUniversity of MarylandBaltimoreUSA
  2. 2.Graduate Program in Life Sciences, Microbiology and Immunology ProgramUniversity of MarylandBaltimoreUSA
  3. 3.Center for Genomic Sciences, Allegheny-Singer Research InstitutePittsburghUSA
  4. 4.Department of Biological SciencesNorthern Arizona UniversityFlagstaffUSA
  5. 5.Department of Microbiology and Immunology, Medical SchoolUniversity of MarylandBaltimoreUSA

Personalised recommendations