Uncertainty in Fuzzy Sets

  • Janusz T. Starczewski
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 284)


Vagueness and uncertainty are intrinsic aspects of engineering design. Therefore, in this chapter, we introduce mathematical tools for modelling various types of vagueness and uncertainty, including fuzzy sets, interval-valued fuzzy sets, fuzzy-valued (type-2) fuzzy sets, rough sets, rough approximations of fuzzy sets, and two different definitions of fuzzy-rough sets. Finally, we aim to categorize different types of uncertainty regarding various sources of it.


Membership Function Fuzzy Subset Fuzzy Measure Possibility Distribution Fuzzy Partition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Atanassov(1986)]
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [Atanassov(1999)]
    Atanassov, K.T.: Intuitionistic fuzzy sets: theory and applications. Studies in Fuzziness and Soft Computing, vol. 35. Springer-Verlag (1999)Google Scholar
  3. [Baczyński and Jayaram(2008)]
    Baczyński, M., Jayaram, B.: Fuzzy implications. Studies in Fuzziness and Soft Computing, vol. 231. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  4. [Borkowski(1970)]
    Borkowski, L. (ed.): Selected Works of J. Łukasiewicz, North-Holland, Amsterdam (1970)Google Scholar
  5. [Bustince and Burillo(1996)]
    Bustince, H., Burillo, P.: Vague sets are intuitionistic fuzzy sets. Fuzzy Sets and Systems 79(3), 403–405 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  6. [Dubois and Prade(1980)]
    Dubois, D., Prade, H.: Fuzzy sets and systems: Theory and applications. Academic Press, Inc., New York (1980)zbMATHGoogle Scholar
  7. [Dubois and Prade(1987)]
    Dubois, D., Prade, H.: Necessity measures and the resolution principle. IEEE Transactions on Systems, Man, and Cybernetics 17, 474–478 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [Dubois and Prade(1988)]
    Dubois, D., Prade, H.: Possibility Theory. Plenum Press, New York (1988)zbMATHCrossRefGoogle Scholar
  9. [Dubois and Prade(1990a)]
    Dubois, D., Prade, H.: Resolution principles in possibilistic logic. International Journal of Approximate Reasoning 4, 1–21 (1990a)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [Dubois and Prade(1990b)]
    Dubois, D., Prade, H.: Rough fuzzy sets and fuzzy rough sets. International Journal on General Systems 17, 191–209 (1990)zbMATHCrossRefGoogle Scholar
  11. [Dubois and Prade(1991)]
    Dubois, D., Prade, H.: Fuzzy sets in approximate reasoning, part 1: inference with possibility distributions. Fuzzy Sets and Systems 40, 143–202 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [Dubois and Prade(2005)]
    Dubois, D., Prade, H.: Interval-valued fuzzy sets, possibility theory and imprecise probability. In: Proceedings of International Conference in Fuzzy Logic and Technology, pp. 314–319 (2005)Google Scholar
  13. [Dubois et al(2001)Dubois, Prade, and Sabbadin]
    Dubois, D., Prade, H., Sabbadin, R.: Decision-theoretic foundations of qualitative possibility theory. European Journal on Operational Research 128, 459–478 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  14. [Dubois et al(2005)Dubois, Esteva, Godo, and Prade]
    Dubois, D., Esteva, F., Godo, L., Prade, H.: An information-vased discussion of vagueness. In: Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, ch. 7, pp. 892–913. Elsevier (2005)Google Scholar
  15. [Dziech and Gorzałczany(1987)]
    Dziech, A., Gorzałczany, M.B.: Decision making in signal transmission problems with interval-valued fuzzy sets. Fuzzy Sets and Systems 23, 191–203 (1987)MathSciNetCrossRefGoogle Scholar
  16. [Gödel(1932)]
    Gödel, K.: Zum intuitionistischen aussagenkalkül (on the intuitionistic propositional calculus). Mathematisch-Naturwissenschaftliche Klasse 69, 65–66 (1932)Google Scholar
  17. [Goguen(1967)]
    Goguen, J.: L-fuzzy sets. Journal of Mathematical Analysis and Applications 18, 145–174 (1967)MathSciNetzbMATHCrossRefGoogle Scholar
  18. [Gorzałczany(1987)]
    Gorzałczany, M.B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets and Systems 21, 1–17 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [Greco et al(1998)Greco, Matarazzo, and Słowiński]
    Greco, S., Matarazzo, B., Słowiński, R.: Fuzzy Similarity Relation as a Basis for Rough Approximations. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 283–289. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. [Greco et al(2006)Greco, Inuiguchi, and Słowiński]
    Greco, S., Inuiguchi, M., Słowiński, R.: Fuzzy rough sets and multiple-premise gradual decision rules. International Journal of Approximate Reasoning 41(2), 179–211 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  21. [Inuiguchi and Tanino(2004)]
    Inuiguchi, M., Tanino, T.: New fuzzy rough sets based on certainty qualification. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neural Computing: Techniques for Computing with Words, pp. 277–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. [Karnik and Mendel(2000)]
    Karnik, N.N., Mendel, J.M.: Operations on type-2 fuzzy sets. Fuzzy Sets and Systems 122, 327–348 (2000)MathSciNetCrossRefGoogle Scholar
  23. [Kleene(1952)]
    Kleene, S.: Introduction to Metamathematics. Van Nostrand (1952)Google Scholar
  24. [Klement et al(1999)Klement, Mesiar, and Pap]
    Klement, E.P., Mesiar, R., Pap, E.: Quasi- and pseudo-inverses of monotone functions, and the construction of t-norms. Fuzzy Sets and Systems 104, 3–13 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  25. [Klement et al(2000)Klement, Mesiar, and Pap]
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Dordrecht (2000)zbMATHGoogle Scholar
  26. [Klir and Yuan(1995)]
    Klir, G.J., Yuan, B.: Fuzzy sets and fuzzy logic: Theory and applications. Prentice Hall PTR, Upper Saddle River (1995)zbMATHGoogle Scholar
  27. [Kruse et al(1994)Kruse, Gebhardt, and Klawonn]
    Kruse, R., Gebhardt, J., Klawonn, F.: Foundations of fuzzy systems. John Wiley & Sons (1994)Google Scholar
  28. [Ling(1965)]
    Ling, C.H.: Representation of associative functions. Publicationes Mathematicae Debrecen 12, 189–212 (1965)MathSciNetGoogle Scholar
  29. [Liu et al(2004)Liu, Yao, and Yao]
    Liu, W.N., Yao, J., Yao, Y.: Rough Approximations Under level Fuzzy Sets. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 78–83. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. [Łukasiewicz(1920c)]
    Łukasiewicz, J.: O logice trójwartościowej (on three-valued logic). Ruch Filozoficzny 5, 170–171 (1920c) (in english translation) [Borkowski 1970]Google Scholar
  31. [Łukasiewicz and Tarski(1930)]
    Łukasiewicz, J., Tarski, A.: Untersuchungen über den aussagenkalkül. Comptes Rendus des Séancs de la Société des Sciences et des Lettres de Varsovie 23, 30–50 (1930) (in english translation) [Borkowski 1970]Google Scholar
  32. [Mas et al(2007)Mas, Monserrat, Torrens, and Trillas]
    Mas, M., Monserrat, M., Torrens, J., Trillas, E.: A survey on fuzzy implication functions. IEEE Transactions on Fuzzy Systems 15(6), 1107–1121 (2007)CrossRefGoogle Scholar
  33. [Mendel(2001)]
    Mendel, J.M.: Uncertain rule-based fuzzy logic systems: Introduction and new directions 2001. Prentice Hall PTR, Upper Saddle River (2001)zbMATHGoogle Scholar
  34. [Menger(1942)]
    Menger, K.: Statistical metrics. Proc. National Academy of Science 28(12), 535–537 (1942)MathSciNetzbMATHCrossRefGoogle Scholar
  35. [Mizumoto and Tanaka(1976)]
    Mizumoto, M., Tanaka, K.: Some properties of fuzzy sets of type-2. Information and Control 31, 312–340 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  36. [Moore(1966)]
    Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)zbMATHGoogle Scholar
  37. [Mostert and Shields(1957)]
    Mostert, P., Shields, A.: On the structure of semigroups on a compact manifold with boudary. Annals of Mathematics 65, 117–143 (1957)MathSciNetzbMATHCrossRefGoogle Scholar
  38. [Nakamura(1988)]
    Nakamura, A.: Fuzzy rough sets. Note on Multiple-Valued Logic in Japan 9(8), 1–8 (1988)Google Scholar
  39. [Negoita and Ralescu(1975)]
    Negoita, C., Ralescu, D.: Applications of Fuzzy Sets to Systems Analysis. Wiley, New York (1975)zbMATHGoogle Scholar
  40. [Nguyen et al(2011)Nguyen, Pal, and Skowron]
    Nguyen, H.S., Pal, S.K., Skowron, A.: Rough sets and fuzzy sets in natural computing. Theoretical Computer Science 412(42), 5816–5819 (2011)MathSciNetCrossRefGoogle Scholar
  41. [Nguyen and Walker(2000)]
    Nguyen, H.T., Walker, E.A.: A first course in fuzzy logic, 2nd edn. Chapman & Hall/CRC (2000)Google Scholar
  42. [Pawlak(1982)]
    Pawlak, Z.: Rough sets. International Journal of Computer and Information Science 11, 341–356 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  43. [Pawlak(1984)]
    Pawlak, Z.: Rough classification. International Journal of Man-Machine Studies 20, 469–485 (1984)zbMATHCrossRefGoogle Scholar
  44. [Schweizer and Sklar(1983a)]
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. North-Holland, New York (1983a)zbMATHGoogle Scholar
  45. [Schweizer and Sklar(1983b)]
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific Journal of Mathematics 10, 313–334 (1983b)MathSciNetGoogle Scholar
  46. [Shafer(1976)]
    Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press, Princenton (1976)zbMATHGoogle Scholar
  47. [Skowron(2005a)]
    Skowron, A.: Rough sets and vague concepts. Fundamenta Informaticae 64(1–4), 417–431 (2005)MathSciNetzbMATHGoogle Scholar
  48. [Skowron(2005b)]
    Skowron, A.: Rough Sets in Perception-Based Computing. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 21–29. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  49. [Starczewski(2010)]
    Starczewski, J.T.: General type-2 FLS with uncertainty generated by fuzzy rough sets. In: Proc. IEEE-FUZZ 2010, Barcelona, pp. 1790–1795 (2010)Google Scholar
  50. [Uncu and Türkşen(2007)]
    Uncu, O., Türkşen, I.B.: Discrete interval type 2 fuzzy system models using uncertainty in learning parameters. IEEE Transactions on Fuzzy Systems 15(1), 90–106 (2007)CrossRefGoogle Scholar
  51. [Walker and Walker(2005)]
    Walker, C.L., Walker, E.A.: The algebra of fuzzy truth values. Fuzzy Sets and Systems 2, 309–347 (2005)CrossRefGoogle Scholar
  52. [Walker and Walker(2009)]
    Walker, C.L., Walker, E.A.: Sets with type-2 operations. International Journal of Approximate Reasoning 50, 63–71 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  53. [Willaeys and Malvache(1981)]
    Willaeys, D., Malvache, N.: The use of fuzzy sets for the treatment of fuzzy information by computer. Fuzzy Sets and Systems 5, 323–328 (1981)zbMATHCrossRefGoogle Scholar
  54. [Yao(2004)]
    Yao, Y.: Semantics of Fuzzy Sets in Rough Set Theory. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II. LNCS, vol. 3135, pp. 297–318. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  55. [Zadeh(1965)]
    Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  56. [Zadeh(1975)]
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning — I. Information Sciences 8, 199–249 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  57. [Zadeh(1978)]
    Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1, 3–28 (1978)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Computer EngineeringCzestochowa University of TechnologyCzestochowaPoland

Personalised recommendations