Optimization of Reversible Circuits Using Reconfigured Templates

  • Md. Mazder Rahman
  • Gerhard W. Dueck
  • Anindita Banerjee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7165)


This paper presents a new method to optimize the quantum costs of reversible circuits. A single quantum implementation of the Toffoli-3 gate has been used to decompose reversible circuits into quantum circuits. Reconfigured quantum templates using splitting rules are introduced. The Controlled-NOT, Controlled-V, and Controlled-V  +  gates can be split into two gates – splitting rules are derived from this fact. Quantum costs of reversible circuits are measured by the number of two-qubit operations. Therefore, the costs of reconfigured templates will be unchanged when the splitting rules are applied. Although the number of quantum gates of reconfigured templates increases, their quantum cost remains invariant. Experimental results show that significant cost reductions can be achieved with the proposed method.


Logic Synthesis Reversible Logic Quantum Circuit Entangled State Quantum Cost Quantum Templates 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. 5, 183–191 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)Google Scholar
  3. 3.
    Perkowski, M., Lukac, M., Pivtoraiko, M., Kerntopf, P., Folgheraiter, M.: A hierarchicai approach to computer aided design of quantum circuits. In: 6th International Symposium on Representations and Methodology of Future Computing Technology, pp. 201–209 (2003)Google Scholar
  4. 4.
    Miller, D.M., Maslov, D., Dueck, G.W.: A transformation based algorithm for reversible logic synthesis. In: Design Automation Conference (2003)Google Scholar
  5. 5.
    Iwama, K., Kambayashi, Y., Yamashita, S.: Transformation rules for designing CNOT-based quantum circuits. In: Design Automation Conference, New Orleans, Louisiana, USA (2002)Google Scholar
  6. 6.
    Mishchenko, A., Perkowski, M.: Logic synthesis of reversible wave cascades. In: International Workshop on Logic Synthesis (2002)Google Scholar
  7. 7.
    Barenco, A., Bennett, C.H., Cleve, R., DiVinchenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. The American Physical Society 52, 3457–3467 (1995)Google Scholar
  8. 8.
    Maslov, D., Young, C., Dueck, G.W., Miller, D.M.: Quantum circuit simplification using templates. In: DATE - Design, Automation and Test in Europe, pp. 1208–1213 (2005)Google Scholar
  9. 9.
    Maslov, D., Dueck, G.W., Miller, D.M.: Toffoli network synthesis with templates. Transactions on Computer Aided Design 24, 807–817 (2005)CrossRefGoogle Scholar
  10. 10.
    Hung, W., Song, X., Yang, G., Yang, J., Perkowski, M.: Optimal synthesis of multiple output Boolean functions using a set of quantum gates by symbolic reachability analysis. Transactions on Computer Aided Design 25, 1652–1663 (2006)CrossRefGoogle Scholar
  11. 11.
    Große, D., Wille, R., Dueck, G.W., Drechsler, R.: Exact synthesis of elementary quantum gate circuits for reversible functions with don’t cares. In: International Symposium on Multiple Valued Logic, pp. 214–219 (2008)Google Scholar
  12. 12.
    Mazder, R.M., Banerjee, A., Dueck, G.W., Pathak, A.: Two-qubit quantum gates to reduce the quantum cost of reversible circuit. In: Proceedings of the International Symposium on Multiple-Valued Logic, pp. 86–92 (2011)Google Scholar
  13. 13.
    Toffoli, T.: Reversible computing. Tech memo MIT/LCS/TM-151, MIT Lab for Comp. Sci. (1980)Google Scholar
  14. 14.
    Peres, A.: Reversible logic and quantum computers. Phys. Rev. A 32, 3266–3276 (1985)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21, 219–253 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: RevLib: An online resource for reversible functions and reversible circuits. In: Int’l Symp. on Multi-Valued Logic, pp. 220–225 (2008), RevLib,
  17. 17.
    Soeken, M., Frehse, S., Wille, R., Drechsler, R.: RevKit: A toolkit for reversible circuit design. In: Workshop on Reversible Computation (2010), RevKit,

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Md. Mazder Rahman
    • 1
  • Gerhard W. Dueck
    • 1
  • Anindita Banerjee
    • 2
  1. 1.Faculty of Computer ScienceUniversity of New BrunswickCanada
  2. 2.Department of Physics and Material Science EngineeringJIITNoidaIndia

Personalised recommendations