A Reversible Processor Architecture and Its Reversible Logic Design

  • Michael Kirkedal Thomsen
  • Holger Bock Axelsen
  • Robert Glück
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7165)

Abstract

We describe the design of a purely reversible computing architecture, Bob, and its instruction set, BobISA. The special features of the design include a simple, yet expressive, locally-invertible instruction set, and fully reversible control logic and address calculation. We have designed an architecture with an ISA that is expressive enough to serve as the target for a compiler from a high-level structured reversible programming language.

All-in-all, this paper demonstrates that the design of a complete reversible computing architecture is possible and can serve as the core of a programmable reversible computing system.

Keywords

Program Counter Memory Instruction Gate Count Branch Register Address Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Axelsen, H.B.: Clean Translation of an Imperative Reversible Programming Language. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 144–163. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  2. 2.
    Axelsen, H.B., Glück, R.: A Simple and Efficient Universal Reversible Turing Machine. In: Dediu, A.-H., Inenaga, S., Martín-Vide, C. (eds.) LATA 2011. LNCS, vol. 6638, pp. 117–128. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  3. 3.
    Axelsen, H.B., Glück, R.: What Do Reversible Programs Compute? In: Hofmann, M. (ed.) FOSSACS 2011. LNCS, vol. 6604, pp. 42–56. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 4.
    Axelsen, H.B., Glück, R., Yokoyama, T.: Reversible Machine Code and Its Abstract Processor Architecture. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 56–69. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Physical Review A 52(5), 3457–3467 (1995)CrossRefGoogle Scholar
  6. 6.
    Burignat, S., Thomsen, M.K., Klimczak, M., Olczak, M., De Vos, A.: Interfacing Reversible Pass-Transistor CMOS Chips with Conventional Restoring CMOS Circuits. In: De Vos, A., Wille, R. (eds.) RC 2011. LNCS, vol. 7156, pp. 113–123. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Cezzar, R.: The design of a processor architecture capable of forward and reverse execution. In: IEEE Proceedings of the SOUTHEASTCON 1991, vol. 2, pp. 885–890. IEEE (1991)Google Scholar
  8. 8.
    Cuccaro, S.A., Draper, T.G., Kutin, S.A., Moulton, D.P.: A new quantum ripple-carry addition circuit. arXiv:quant-ph/0410184v1 (2005)Google Scholar
  9. 9.
    De Vos, A.: Reversible Computing: Fundamentals, Quantum Computing and Applications. Wiley-VCH (2010)Google Scholar
  10. 10.
    De Vos, A., Burignat, S., Thomsen, M.K.: Reversible implementation of a discrete integer linear transformation. Journal of Multiple-Valued Logic and Soft Computing 18(1), 25–35 (2012)MathSciNetGoogle Scholar
  11. 11.
    Feynman, R.P.: Feynman Lectures on Computation. Addison-Wesley (1996)Google Scholar
  12. 12.
    Frank, M.P.: Reversibility for Efficient Computing. Ph.D. thesis, EECS Department, Massachusetts Institute of Technology (1999)Google Scholar
  13. 13.
    Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21(3-4), 219–253 (1982)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), 183–191 (1961)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Lutz, C.: Janus: A time-reversible language. A letter to R. Landauer (1986), http://www.tetsuo.jp/ref/janus.html
  16. 16.
    Maslov, D., Dueck, G., Miller, D.: Synthesis of Fredkin-Toffoli reversible networks. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 13(6), 765–769 (2005)CrossRefGoogle Scholar
  17. 17.
    Morita, K.: A Simple Universal Logic Element and Cellular Automata for Reversible Computing. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 102–113. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Patterson, D.A., Hennessy, J.L.: Computer Organization & Design: the hardware/software interface, 2nd edn. Morgan Kaufmann Publishers (1997)Google Scholar
  19. 19.
    Shende, V., Bullock, S., Markov, I.: Synthesis of quantum-logic circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(6), 1000–1010 (2006)CrossRefGoogle Scholar
  20. 20.
    Thomsen, M.K., Axelsen, H.B.: Parallelization of reversible ripple-carry adders. Parallel Processing Letters 19(1), 205–222 (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible arithmetic logic unit for quantum arithmetic. Journal of Physics A: Mathematical and Theoretical 43(38), 382002 (2010)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. International Journal of Unconventional Computing 1(4), 339–355 (2005)Google Scholar
  23. 23.
    Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Physical Review A 54(1), 147–153 (1996)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Vieri, C.J.: Reversible Computer Engineering and Architecture. Ph.D. thesis, EECS Department, Massachusetts Institute of Technology (1999)Google Scholar
  25. 25.
    Wille, R., Drechsler, R.: Towards a Design Flow for Reversible Logic. Springer Science (2010)Google Scholar
  26. 26.
    Wille, R., Offermann, S., Drechsler, R.: SyReC: A programming language for synthesis of reversible circuits. In: Proceedings of the Forum on Specification & Design Languages, pp. 1–6. IET, Southhampton (2010)Google Scholar
  27. 27.
    Yokoyama, T., Axelsen, H.B., Glück, R.: Principles of a reversible programming language. In: Proceedings of Computing Frontiers, pp. 43–54. ACM (2008)Google Scholar
  28. 28.
    Yokoyama, T., Glück, R.: A reversible programming language and its invertible self-interpreter. In: Proceedings of Partial Evaluation and Program Manipulation, pp. 144–153. ACM (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Kirkedal Thomsen
    • 1
  • Holger Bock Axelsen
    • 1
  • Robert Glück
    • 1
  1. 1.DIKU, Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations