Interfacing Reversible Pass-Transistor CMOS Chips with Conventional Restoring CMOS Circuits

  • Stéphane Burignat
  • Michael Kirkedal Thomsen
  • Michał Klimczak
  • Mariusz Olczak
  • Alexis De Vos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7165)


Recent progress on the prototyping of reversible digital circuits, have shown that adiabatic reversible dual-line pass-transistor logic can be used for special purpose applications in reversible computation. This, however, raises new issues regarding the compatibility between this adiabatic logic implementation and conventional CMOS logic. The greatest difficulty is brought by the difference in signal shape used by these two logic families. Whereas standard switching CMOS circuits are operated by rectangular pulses, dual-line pass-transistor reversible circuits are controlled by triangular or trapezoidal signals to ensure adiabatic switching of the transistors. This work proposes a simple technical solution that allows interfacing reversible pass-transistor logic with conventional CMOS logic, represented here by an FPGA embedded in a commercial Xilinx Spartan-3E board. All proposed solutions have successfully been tested, which enables the FPGA to perform calculations directly on a reversible chip.


Clock Signal CMOS Circuit Triangular Waveform Reversible Circuit Triangular Pulse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Landauer, R.: Irreversibility and heat generation in the computing process. IBM Journal of Research and Development 5(3), 183–191 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Von Neumann, J.: Theory of self-reproducing automata, p. 66ss. University of Illinois Press, Urbana (1966)Google Scholar
  3. 3.
    Bennett, C.H.: Logical reversibility of computation. IBM Journal of Research and Development 17(6), 525–532 (1973)zbMATHCrossRefGoogle Scholar
  4. 4.
    Fredkin, E., Toffoli, T.: Conservative logic. International Journal of Theoretical Physics 21(3-4), 219–253 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Feynman, R.P.: Quantum mechanical computer. Optics News 11, 11–20 (1985)CrossRefGoogle Scholar
  6. 6.
    Desoete, B., De Vos, A., Sibiński, M., Widerski, T.: Feynman’s reversible logic gates, implemented in silicon. In: Proceedings of the 6th International Conference on MIXed DESign of Integrated Circuits and Systems (MIXDES), Kraków, pp. 497–502 (June 1999)Google Scholar
  7. 7.
    Van Rentergem, Y., De Vos, A.: Optimal design of a reversible full adder. International Journal of Unconventional Computing 4(1), 339–355 (2005)Google Scholar
  8. 8.
    Burignat, S., De Vos, A.: Test of a majority-based reversible (quantum) 4 bits ripple-carry adder in adiabatic calculation. In: Proceedings of the 18th International Conference on MIXed DESign of Integrated Circuits and Systems (MIXDES), Gliwice, Poland, pp. 368–373 (2011)Google Scholar
  9. 9.
    Amirante, E., Fischer, J., Lang, M., Bargagli-Stoffi, A., Berthold, J., Heer, C., Schmitt-Landsiedel, D.: An ultra low-power adiabatic adder embedded in a standard 0.13 μm CMOS environment. In: Proceedings of the 29th European Solid-State Circuits Conference (ESSCIRC 2003), pp. 599–602 (2003)Google Scholar
  10. 10.
    De Vos, A., Burignat, S., Thomsen, M.K.: Reversible implementation of a discrete integer linear transformation. Journal of Multiple-Valued Logic and Soft Computing 18(5), 25–35 (2011)Google Scholar
  11. 11.
    Cuccaro, S., Draper, T., Moulton, D., Kutin, S.: A new quantum ripple-carry addition circuit. In: Proceedings of the 8th Workshop on Quantum Information Processing, Cambridge (June 2005); arXiv:quant-ph/0410184v, 19 pages (2004)Google Scholar
  12. 12.
    Thomsen, M.K., Glück, R., Axelsen, H.B.: Reversible Arithmetic Logic Unit for quantum arithmetic. Journal of Physics A: Mathematical and Theoretical 43, 382002ss (2010)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Xilinx: Spartan-3E FPGA Starter Kit Board User Guide, UG230 (v1.1), 166 pages, June 20 (2008)Google Scholar
  14. 14.
    Younis, S.G., Knight, J.T.F.: Asymptotically zero energy computing split-level charge recovery logic. In: Proceedings of the International Workshop in Low Power Design, pp.177–182 (1994)Google Scholar
  15. 15.
    Vieri, C.J.: Reversible computer engineering and architecture. PhD. Thesis, MIT 165 pages (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Stéphane Burignat
    • 1
  • Michael Kirkedal Thomsen
    • 2
  • Michał Klimczak
    • 1
  • Mariusz Olczak
    • 1
  • Alexis De Vos
    • 1
    • 3
  1. 1.Vakgroep Elektronica en InformatiesystemenUniversiteit GentGentBelgium
  2. 2.Department of Computer Science, DIKUUniversity of CopenhagenCopenhagenDenmark
  3. 3.Imec v.z.w.LeuvenBelgium

Personalised recommendations