Advertisement

Applications

  • Karl-Heinz Schwalbe
  • Ingo Scheider
  • Alfred Cornec
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

Apart from the application to pre-cracked bulk materials under static loading, the cohesive model can be applied to almost every problem of the integrity of materials and structural components. The model is gaining increasing interest for application, it is in particular ideally suited for large amounts of crack extension and the behaviour of interfaces, such as phase boundaries, coatings, bonded joints, delamination in layered materials, and fibres in matrices as well as the prediction of fracture paths. Crack extension in bulk materials will be shown in some detail whereas other areas of application outside the experience gained at GKSS will only be briefly touched upon in this chapter. They demonstrate the enormous range of problems which can be treated using the cohesive model.

Keywords

Weld Metal Heat Affected Zone Heat Affected Zone Crack Path Crack Extension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Banerjee, A., Manivasagam, R.: Triaxiality dependent cohesive zone model. Eng. Fract. Mech. 76, 1761–1770 (2009)Google Scholar
  2. 2.
    Scheider, I., Brocks, W.: Simulation of crack propagation and failure in thin walled structures using the cohesive model. In: Loughlan, J. (ed.) Proceedings of the 4th International Conference on Thin-Walled Structures (2004)Google Scholar
  3. 3.
    Scheider, I., Schödel, M., Brocks, W., Schönfeld, W.: Crack propagation analysis with CTOA and cohesive model: comparison and experimental validation. Eng. Fract. Mech. 73, 252–263 (2006)CrossRefGoogle Scholar
  4. 4.
    Cornec, A., Schönfeld, W., Schwalbe, K.-H., Scheider, I.: Application of the cohesive model for predicting the residual strength of a large scale fuselage structure with a two-bay crack. Eng. Fail. Anal. 16, 2541–2558 (2008)CrossRefGoogle Scholar
  5. 5.
    Yuan, H., Lin, G., Cornec, A.: Verification of a cohesive zone model for ductile fracture. J. Eng. Mater. Technol. 118, 192–200 (1996)CrossRefGoogle Scholar
  6. 6.
    Cornec, A., Lin, G.: Kohäsivmodell als lokales Bruchkriterium für duktile Bruchvorgänge. Technical Report GKSS/WMA/98/5, GKSS (1998)Google Scholar
  7. 7.
    Siegmund, T., Brocks, W., Heerens, J., Tempus, G., Zink, W.: Modeling of crack growth in thin sheet aluminium. In: International Exhibition and Conference: Recent Advances in Solids and Structures (1999)Google Scholar
  8. 8.
    Scheider, I., Brocks, W.: Cohesive elements for thin-walled structures. Comp. Mater. Sci. 37, 101–109 (2003)CrossRefGoogle Scholar
  9. 9.
    Scheider, I., Uz, V., Huber, N.: Applicability of the cohesive model to fracture of light-weight structures: parameter identification and thickness dependence. In: 18th European Conference on Fracture, Dresden (2010)Google Scholar
  10. 10.
    Schwalbe, K.-H.: Effect of weld metal mis-match on toughness requirements: some simple analytical considerations using the engineering treatment model (ETM). Eng. Fract. Mech. 67(257), 277 (1992)Google Scholar
  11. 11.
    Schwalbe, K.-H.: Welded joints with non-matching weld metal––crack driving force considerations on the basis of the engineering treatment model (ETM). Eng. Fract. Mech. 63, 1–24 (1993)CrossRefGoogle Scholar
  12. 12.
    Schwalbe, K.-H., Kocak, M. (eds.): Second International Symposium on Mis-Matching of Interfaces and Welds. GKSS Research Centre, Geesthacht (1977)Google Scholar
  13. 13.
    Schwalbe, K-H, Kim, Y-J, Hao, S, Cornec, A, Kocak, M.: EFAM ETM-MM 96––the ETM Method for assessing the significance of crack-like defects in joints with mechanical heterogeneity (strength mismatch). Report GKSS 97/E/9, GKSS Research Centre, Geesthacht (1997)Google Scholar
  14. 14.
    Turon, A., Dàvila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)CrossRefGoogle Scholar
  15. 15.
    Yuan, H., Chen, J.: Computational analysis of thin coating layer using a cohesive model and gradient plasticity. Eng. Fract. Mech. 70, 1929–1942 (2003)CrossRefGoogle Scholar
  16. 16.
    Xu, X.-P., Needleman, A.: Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line. Int. J. Fract. 74, 253–274 (1995)Google Scholar
  17. 17.
    Scheider, I., Brocks, W.: Residual strength and crack path predictions by the cohesive model. In: Proceedings of the International Conference on Crack Paths, Parma (2006)Google Scholar
  18. 18.
    Parmigiani, J.P., Thouless, M.D.: The roles of toughness and cohesive strength on crack deflection at interfaces. J. Mech. Phys. Solids 54, 266–287 (2006)zbMATHCrossRefGoogle Scholar
  19. 19.
    Brocks, W., Scheider, I.: Prediction of crack path bifurcation under quasi-static loading by the cohesive model. Struct. Durab. Health Monit. 70, 1–11 (2008)Google Scholar
  20. 20.
    Nègre, P., Steglich, D., Brocks, W.: Crack extension at an interface: prediction of fracture toughness and simulation of crack path deviation. Int. J. Fract. 134, 209–229 (2005)CrossRefGoogle Scholar
  21. 21.
    Siegmund, T., Fleck, N.A., Needleman, A.: Dynamic crack growth across an interface. Int. J. Fract. 85, 381–402 (1997)CrossRefGoogle Scholar
  22. 22.
    Arata, J.J.M., Kumar, K.S., Curtin, W.A., Needleman, A.: Crack growth across colony boundaries in binary lamellar TiAl. Mater. Sci. Eng. A329–A331, 532–537 (2002)Google Scholar
  23. 23.
    Costanzo, F., Walton, J.R.: A study of dynamic crack growth in elastic materials using a cohesive zone model. Int. J. Eng. Sci. 35, 1085–1114 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Knauss, W.G.: Time dependent fracture and cohesive zones. J. Eng. Mater. Technol. 115, 262–267 (1993)CrossRefGoogle Scholar
  25. 25.
    Estevez, R., Tijssens, M.G.A., Van der Giessen, E.: Modelling of the competition between shear yielding and crazing in glassy polymers. J. Mech. Phys. Solids 48, 2585–2617 (2000)zbMATHCrossRefGoogle Scholar
  26. 26.
    Anvari, M., Scheider, I., Thaulow, C.: Simulation of dynamic ductile crack growth using strain-rate and triaxiality-dependent cohesive elements. Eng. Fract. Mech. 73, 2210–2228 (2006)CrossRefGoogle Scholar
  27. 27.
    Serebrinsky, S., Carter, E.A., Ortiz, M.: A quantum-mechanically informed continuum model of hydrogen embrittlement. J. Mech. Phys. Solids 52, 2403–2430 (2004)zbMATHCrossRefGoogle Scholar
  28. 28.
    Falkenberg, R., Brocks, W., Dietzel, W., Scheider, I.: Modelling the effect of hydrogen on ductile tearing resistance of steels. Int. J. Mat. Res. 101, 989–996 (2010)CrossRefGoogle Scholar
  29. 29.
    Scheider, I., Dietzel, W., Pfuff, M.: Simulation of hydrogen assisted stress corrosion cracking using the cohesive model. Eng. Fract. Mech. 75, 4283–4291 (2008)CrossRefGoogle Scholar
  30. 30.
    Camacho, G.T., Ortiz, M.: Computational modelling of impact damage in brittle materials. Int. J. Solids Struct. 33, 2899–2938 (1996)zbMATHCrossRefGoogle Scholar
  31. 31.
    Chaboche, J., Girard, R., Levasseur, P.: On the interface debonding models. Int. J. Damage Mech. 6, 220–257 (1997)CrossRefGoogle Scholar
  32. 32.
    Scheider, I., Brocks, W.: Simulation of cup–cone fracture using the cohesive model. Eng. Fract. Mech. 70, 1943–1962 (2003)Google Scholar
  33. 33.
    Roe, K.-L., Siegmund, T.: An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70, 209–232 (2003)CrossRefGoogle Scholar
  34. 34.
    deAndrés, A., Pérez, J.L., Ortiz, M.: Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminium shafts subjected to axial loading. Int. J. Solids Struct. 36, 2231–2258 (1999)Google Scholar
  35. 35.
    Yang, B., Mall, S., Ravi-Chandar, K.: A cohesive zone model for fatigue crack growth in quasibrittle materials. Int. J. Solids Struct. 38, 3927–3944 (2001)zbMATHCrossRefGoogle Scholar
  36. 36.
    Serebrinsky, S., Ortiz, M.: A hysteretic cohesive law model of fatigue-crack nucleation. Scripta Mater. 53, 1193–1196 (2005)Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Karl-Heinz Schwalbe
    • 1
  • Ingo Scheider
    • 2
  • Alfred Cornec
    • 2
  1. 1.ehem. GKSS-Forschungszentrum GeesthachtGeesthachtGermany
  2. 2.Helmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations