Material Characterisation

  • Karl-Heinz SchwalbeEmail author
  • Ingo Scheider
  • Alfred Cornec
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


The cohesive model can be used for any failure mechanism, i.e. it is applicable to any material and for any fracture mode, i.e. applicable to any loading. However, Mode II, Mode III and mixed mode fractures are of lower priority for engineering applications. In addition, no reliable procedure for parameter identification is available for any mode other than Mode I fracture as to the authors’ knowledge.


Artificial Neural Network Crack Initiation Crack Extension Cohesive Energy Cohesive Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    ISO IS 12135 Metallic materials—Unified method of test for the determination of quasistatic fracture toughness. Int. Organ. Stand. Geneva (2007)Google Scholar
  2. 2.
    Schwalbe, K.-H., Heerens, J., Zerbst, U., Pisarski, H., Kocak, M.: EFAM GTP 02—the GKSS test procedure for determining the fracture behaviour of materials. Report No. GKSS 2002/24, GKSS-Forschungszentrum Geesthacht GmbH, ISSN 0344-9629 (2002) Google Scholar
  3. 3.
    Scheider, I., Schödel, M., Brocks, W., Schönfeld, W.: Crack propagation analysis with CTOA and cohesive model: comparison and experimental validation. Eng. Fract. Mech. 73, 252–263 (2006)CrossRefGoogle Scholar
  4. 4.
    Huber, N., Tsakmakis, C.: A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery. Comput. Methods Appl. Mech. Engrg. 191, 353–384 (2001)zbMATHCrossRefGoogle Scholar
  5. 5.
    Brocks, W., Steglich, D.: Hybrid methods. In: Milne, I., Ritchie, R.O., Karihaloo, B. (eds.) Comprehensive structural integrity, pp. 107–136. Elsevier, Amsterdam (chapter 10.05) (2007)Google Scholar
  6. 6.
    Scheider, I., Brocks, W.: Simulation of cup-cone fracture using the cohesive model. Eng. 29 Fract. Mech. 70, 1943–1962 (2003)Google Scholar
  7. 7.
    Scheider, I., Uz, V., Huber, N.: Applicability of a cohesive model to fracture of thin-walled structures: parameter identification and thickness dependence. Eng. Fract. Mech. (2012, in preparation)Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Karl-Heinz Schwalbe
    • 1
    Email author
  • Ingo Scheider
    • 2
  • Alfred Cornec
    • 2
  1. 1.ehem. GKSS-Forschungszentrum GeesthachtGeesthachtGermany
  2. 2.Helmholtz-Zentrum GeesthachtGeesthachtGermany

Personalised recommendations