• Sundaram Suresh
  • Narasimhan Sundararajan
  • Ramasamy Savitha
Part of the Studies in Computational Intelligence book series (SCI, volume 421)


Signals occurring in applications like medical imaging and telecommunications are inherently complex-valued, and processing them in their natural form preserves the physical characteristics of these signals. Therefore, there is a widespread research interest in developing efficient complex-valued neural networks along with their learning algorithms. However, operating in the Complex domain presents new challenges; foremost among them being the choice of an appropriate complex-valued activation function. Basically, an activation function for a neural network is required to be nonlinear, bounded and differentiable in every point on the considered plane [1]. This implies that in the Complex domain, the function has to be nonlinear, bounded and entire. However, Liouville’s theorem states that an entire and bounded function in the Complex domain is a constant (function) [2]. As neither the analyticity and boundedness can be compromised, nor is a constant function acceptable as an activation function as it cannot project the input space to a non-linear higher dimensional space, choices for activation functions for complex-valued neural network are limited. In this chapter, the different complex-valued neural networks existing in the literature are discussed in detail, along with their limitations.


Independent Component Analysis Extreme Learn Machine Recurrent Neural Network Independent Component Analysis Radial Basis Function Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, New Jersey (1998)Google Scholar
  2. 2.
    Remmert, R.: Theory of Complex Functions. Springer, New York (1991)CrossRefzbMATHGoogle Scholar
  3. 3.
    Leung, H., Haykin, S.: The complex backpropagation algorithm. IEEE Transactions on Signal Processing 39(9), 2101–2104 (1991)CrossRefGoogle Scholar
  4. 4.
    Kim, T., Adali, T.: Fully complex multi-layer perceptron network for nonlinear signal processing. Journal of VLSI Signal Processing 32(1/2), 29–43 (2002)zbMATHGoogle Scholar
  5. 5.
    Yang, S.-S., Ho, C.-L., Siu, S.: Sensitivity analysis of the split-complex valued multilayer perceptron due to the errors of the i.i.d. inputs and weights. IEEE Transactions on Neural Networks 18(5), 1280–1293 (2007)CrossRefGoogle Scholar
  6. 6.
    Zhang, H., Zhang, C., Wu, W.: Convergence of batch split-complex backpropagation algorithm for complex-valued neural networks. Discrete Dynamics in Nature and Society 16, Article ID 329173 (2009), Online Journal,
  7. 7.
    Savitha, R., Suresh, S., Sundararajan, N., Saratchandran, P.: A new learning algorithm with logarithmic performance index for complex-valued neural networks. Neurocomputing 72(16-18), 3771–3781 (2009)CrossRefGoogle Scholar
  8. 8.
    Jianping, D., Sundararajan, N., Saratchandran, P.: Complex-valued minimal resource allocation network for nonlinear signal processing. International Journal of Neural Systems 10(2), 95–106 (2000)Google Scholar
  9. 9.
    Deng, J.P., Sundararajan, N., Saratchandran, P.: Communication channel equalization using complex-valued minimal radial basis function neural networks. IEEE Transactions on Neural Networks 13(3), 687–696 (2002)CrossRefGoogle Scholar
  10. 10.
    Benvenuto, N., Piazza, F.: On the complex backpropagation algorithm. IEEE Transactions on Signal Processing 40(4), 967–969 (1992)CrossRefGoogle Scholar
  11. 11.
    Brandwood, D.H.: A complex gradient operator and its application in adaptive array theory. IEE Proceedings 130, 11–16 (1983)MathSciNetGoogle Scholar
  12. 12.
    Georgiou, G.M., Koutsougeras, C.: Complex domain backpropagation. IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing 39(5), 330–334 (1992)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kim, T., Adali, T.: Approximation by fully complex multi-layer perceptrons. Neural Computation 15(7), 1641–1666 (2003)CrossRefzbMATHGoogle Scholar
  14. 14.
    You, C., Hong, D.: Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks. IEEE Transactions on Neural Networks 9(6), 1442–1455 (1998)CrossRefGoogle Scholar
  15. 15.
    Savitha, R., Suresh, S., Sundararajan, N., Saratchandran, P.: Complex-valued function approximation using an improved BP learning algorithm for feed-forward networks. In: IEEE International Joint Conference on Neural Networks (IJCNN 2008), June 1-8, pp. 2251–2258 (2008)Google Scholar
  16. 16.
    Li, M.B., Huang, G.-B., Saratchandran, P., Sundararajan, N.: Fully complex extreme learning machine. Neurocomputing 68(1-4), 306–314 (2005)CrossRefGoogle Scholar
  17. 17.
    Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE International Joint Conference on Neural Networks (IJCNN 2004), 25-29, vol. 2, pp. 985–990 (2004)Google Scholar
  18. 18.
    Huang, G.B., Siew, C.K.: Extreme learning machine with randomly assigned RBF kernels. Int. J. Inf. Technol. 11(1) (2005)Google Scholar
  19. 19.
    Kantsila, A., Lehtokangas, M., Saarinen, J.: Complex RPROP-algorithm for neural network equalization of GSM data bursts. Neurocomputing 61, 339–360 (2004)CrossRefGoogle Scholar
  20. 20.
    Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks, vol. 1-3, pp. 586–591 (1993)Google Scholar
  21. 21.
    Chen, S., McLaughlin, S., Mulgrew, B.: Complex valued radial basis function network,part I: Network architecture and learning algorithms. EURASIP Signal Processing Journal 35(1), 19–31 (1994)CrossRefzbMATHGoogle Scholar
  22. 22.
    Chen, S., McLaughlin, S., Mulgrew, B.: Complex valued radial basis function network, part II: Application to digital communications channel equalization. Signal Processing 36(2), 175–188 (1994)CrossRefzbMATHGoogle Scholar
  23. 23.
    Li, M.B., Huang, G.B., Saratchandran, P., Sundararajan, N.: Complex-valued growing and pruning RBF neural networks for communication channel equalisation. IEE Proceedings- Vision, Image and Signal Processing 153(4), 411–418 (2006)CrossRefGoogle Scholar
  24. 24.
    Yingwei, L., Sundararajan, N., Saratchandran, P.: A sequential learning scheme for function approximation using minimal radial basis function neural networks. Neural Computation 9(2), 461–478 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Huang, G.B., Saratchandran, P., Sundararajan, N.: A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks 16(1), 57–67 (2005)CrossRefGoogle Scholar
  26. 26.
    Wang, J.: Recurrent neural networks for solving systems of complex-valued linear equations. Electronics Letters 28(18), 1751–1753 (1992)CrossRefGoogle Scholar
  27. 27.
    Mandic, D., Chambers, J.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. John Wiley and Sons, West Sussex (2001)CrossRefGoogle Scholar
  28. 28.
    Li, C., Liao, X., Yu, J.: Complex-valued recurrent neural network with IIR neuron model: training and applications. Circuits Systems Signal Processing 21(5), 461–471 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Goh, S.L., Mandic, D.P.: An augmented extended kalman filter algorithm for complex-valued recurrent neural networks. Neural Computation 19(4), 1039–1055 (2007)CrossRefzbMATHGoogle Scholar
  30. 30.
    Mandic, D.P.: Complex valued recurrent neural networks for noncircular complex signals. In: International Joint Conference on Neural Networks (IJCNN 2009), June 14-19, pp. 1987–1992 (2009)Google Scholar
  31. 31.
    Zhou, W., Zurada, J.M.: Discrete-time recurrent neural networks with complex-valued linear threshold neurons. IEEE Transactions on Circuits and Systems 56(8), 669–673 (2009)CrossRefGoogle Scholar
  32. 32.
    Mandic, D.P., Javidi, S., Goh, S.L., Kuh, A., Aihara, K.: Complex-valued prediction of wind profile using augmented complex statistics. Renewable Energy 34(1), 196–201 (2009)CrossRefGoogle Scholar
  33. 33.
    Gangal, A.S., Kalra, P.K., Chauhan, D.S.: Performance evaluation of complex valued neural networks using various error functions. Proceedings of the World Academy of Science, Engineering and Technology 23, 27–32 (2007)Google Scholar
  34. 34.
    Chen, X.M., Tang, Z., Variappan, C., Li, S.S., Okada, T.: A modified error backpropagation algorithm for complex-valued neural networks. International Journal of Neural Systems 15(6), 435–443 (2005)CrossRefGoogle Scholar
  35. 35.
    Rattan, S.S.P., Hsieh, W.W.: Complex-valued neural networks for nonlinear complex principal component analysis. Neural Networks 18(1), 61–69 (2005)CrossRefzbMATHGoogle Scholar
  36. 36.
    Fiori, S.: Nonlinear complex-valued extensions of Hebbian learning: an essay. Neural Computation 17(4), 779–838 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons, New York (2001)CrossRefGoogle Scholar
  38. 38.
    Hyvarinen, A., Oja, E.: Independent component analysis: Algorithms and applications. Neural Networks 13(4-5), 411–430 (2000)CrossRefGoogle Scholar
  39. 39.
    Lv, Q., Zhang, X., Jia, Y.: Blind Separation Combined Frequency Invariant Beamforming and ICA for Far-field Broadband Acoustic Signals. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 538–543. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  40. 40.
    Chang, A.-C., Jen, C.-W.: Complex-valued ICA utilizing signal-subspace demixing for robust DOA estimation and blind signal separation. Wireless Personal Communications 43(4), 1435–1450 (2007)CrossRefGoogle Scholar
  41. 41.
    Lee, I., Kim, T., Lee, T.-W.: Fast fixed-point independent vector analysis algorithms for convolutive blind source separation. Signal Processing 87(8), 1859–1871 (2007)CrossRefzbMATHGoogle Scholar
  42. 42.
    He, Z., Xie, S., Ding, S., Cichocki, A.: Convolutive blind source separation in the frequency domain based on sparse representation. IEEE Transactions on Audio, Speech, and Language Processing 15(5), 1551–1563 (2007)CrossRefGoogle Scholar
  43. 43.
    Jen, C.-W., Chen, S.-W., Chang, A.-C.: High-resolution DOA estimation based on independent noise component for correlated signal sources. Neural Computing and Applications 18(4), 381–385 (2008)Google Scholar
  44. 44.
    Calhoun, V.D., Adali, T., Pearlson, G.D., van Zijl, P.C., Pekar, J.J.: Independent component analysis of fMRI data in the complex domain. Magnetic Resonance in Medicine 48(1), 180–192 (2002)CrossRefGoogle Scholar
  45. 45.
    Calhoun, V., Adali, T.: Complex infomax: Convergence and approximation of infomax with complex nonlinearities. The Journal of VLSI Signal Processing 44(1-2), 173–190 (2006)zbMATHGoogle Scholar
  46. 46.
    Adali, T., Calhoun, V.D.: Complex ICA of brain imaging data. IEEE Signal Processing Magazine 24(5), 136–139 (2007)CrossRefGoogle Scholar
  47. 47.
    Bingham, E., Hyvarinen, A.: Ica of complex valued signals: A fast and robust deflationary algorithm. In: International Joint Conference on Neural Networks (IJCNN 2000), vol. 3 (2000)Google Scholar
  48. 48.
    Bingham, E., Hyvarinen, A.: A fast fixed-point algorithm for independent component analysis of complex valued signals. International Journal of Neural Systems 10(1), 1–8 (2000)Google Scholar
  49. 49.
    Fiori, S.: Neural independent component analysis by maximum-mismatch learning principle. Neural Networks 16(8), 1201–1221 (2003)CrossRefGoogle Scholar
  50. 50.
    Yang, T., Mikhael, W.B.: A general approach for image and co-channel interference suppression in diversity wireless receivers employing ICA. Circuits, Systems, and Signal Processing 23(4), 317–327 (2004)CrossRefzbMATHGoogle Scholar
  51. 51.
    Erikkson, J., Koivunen, V.: Complex random vectors and ICA models: Identifiability, uniqueness, and separability. IEEE Transactions on Information Theory 52(3), 1017–1029 (2006)CrossRefGoogle Scholar
  52. 52.
    Sallberg, B., Grbic, N., Claesson, I.: Complex-valued independent component analysis for online blind speech extraction. IEEE Transactions on Audio, Speech, and Language Processing 16(8), 1624–1632 (2008)CrossRefGoogle Scholar
  53. 53.
    Li, H., Adali, T.: A class of complex ICA algorithms based on the kurtosis cost function. IEEE Transactions on Neural Networks 19(3), 408–420 (2008)CrossRefGoogle Scholar
  54. 54.
    Novey, M., Adali, T.: Complex ICA by negentropy maximization. IEEE Transactions on Neural Networks 19(4), 596–609 (2008)CrossRefGoogle Scholar
  55. 55.
    Li, X.-L., Adali, T.: Complex independent component analysis by entropy bound minimization. IEEE Transactions on Circuits and Systems I 57(7), 1417–1430 (2010)CrossRefMathSciNetGoogle Scholar
  56. 56.
    Ollilaa, E., Koivunen, V.: Complex ICA using generalized uncorrelating transform. Signal Processing 89(4), 365–377 (2009)CrossRefGoogle Scholar
  57. 57.
    Novey, M., Adali, T.: On extending the complex fast ICA algorithm to noncircular sources. IEEE Transactions on Signal Processing 56(5), 2148–2154 (2008)CrossRefMathSciNetGoogle Scholar
  58. 58.
    Brown, J., Churchill, R.: Complex Variables and Applications. McGrawHill, New York (1996)Google Scholar
  59. 59.
    Flanigan, F.: Complex Variables: Harmonic and Analytic Functions. Dover Publications, New York (1983)Google Scholar
  60. 60.
    Le Page, W.: Complex Variables and the Laplace Transforms for Engineers. Dover Publications, New York (1980)Google Scholar
  61. 61.
    Fisher, S.: Complex Variables, 2nd edn. Dover Publications, New York (1999)zbMATHGoogle Scholar
  62. 62.
    Wirtinger, W.: Zur formalen theorie der funktionen von mehr komplexen vernderlichen. Annals of Mathematics 97 (1927)Google Scholar
  63. 63.
    Hjorungnes, A., Gesbert, D.: Complex-valued matrix differentiation: Techniques and key results. IEEE Transactions on Signal Processing 55(6), 2740–2746 (2007)CrossRefMathSciNetGoogle Scholar
  64. 64.
    Adali, T., Li, H., Novey, M., Cardoso, J.-F.: Complex ICA using nonlinear functions. IEEE Transactions on Signal Processing 56(9), 4536–4544 (2008)CrossRefMathSciNetGoogle Scholar
  65. 65.
    Loss, D.V., de Castro, M.C.F., Franco, P.R.G., de Castro, E.C.C.: Phase transmittance RBF neural networks. Electronics Letters 43(16), 882–884 (2007)CrossRefGoogle Scholar
  66. 66.
    Uncini, A., Vecci, L., Campolucci, P., Piazza, F.: Complex-valued neural networks with adaptive spline activation function for digital radio links nonlinear equalization. IEEE Transactions on Signal Processing 47(2), 505–514 (1999)CrossRefGoogle Scholar
  67. 67.
    Yang, S.S., Siu, S., Ho, C.L.: Analysis of the initial values in split-complex backpropagation algorithm. IEEE Transactions on Neural Networks 19(9), 1564–1573 (2008)CrossRefGoogle Scholar
  68. 68.
    Nitta, T.: An extension of the back-propagation algorithm to complex numbers. Neural Networks 10(8), 1391–1415 (1997)CrossRefGoogle Scholar
  69. 69.
    Hirose, A.: Continuous complex-valued back-propagation learning. Electronic Letters 28(20), 1854–1855 (1992)CrossRefGoogle Scholar
  70. 70.
    Kim, M.S., Guest, C.C.: Modification of back propagation networks for complex-valued signal processing in frequency domain. In: International Joint Conference on Neural Networks (IJCNN 1990), vol. 3, pp. 27–31 (1990)Google Scholar
  71. 71.
    Karim, A., Adeli, H.: Comparison of the fuzzy-wavelet RBFNN freeway incident detection model with the california algorithm. Journal of Transportation Engineering 128(1), 21–30 (2002)CrossRefGoogle Scholar
  72. 72.
    Jogensen, T.D., Haynes, B.P., Norlund, C.C.F.: Pruning artificial neural networks using neural complexity measures. International Journal of Neural Systems 18(5), 389–403 (2008)CrossRefGoogle Scholar
  73. 73.
    Mayorga, R.V., Carrera, J.: A radial basis function network approach for the computational of inverse continuous time variant functions. International Journal of Neural Systems 17(3), 149–160 (2007)CrossRefGoogle Scholar
  74. 74.
    Pedrycz, W., Rai, P., Zurada, J.: Experience-consistent modeling for radial basis function neural networks. International Journal of Neural Systems 18(4), 279–292 (2008)CrossRefGoogle Scholar
  75. 75.
    Chen, S., Hong, X., Harris, C.J., Hanzo, L.: Fully complex-valued radial basis function networks: Orthogonal least squares regression and classification. Neurocomputing 71(16-18), 3421–3433 (2008)CrossRefGoogle Scholar
  76. 76.
    Chen, S.: Information Science Reference. Complex-valued Neural Networks: Utilizing High-dimensional Parameters, ch. VII. IGI Global snippet, PA (2009)Google Scholar
  77. 77.
    Savitha, R., Suresh, S., Sundararajan, N.: A fully complex-valued radial basis function network and its learning algorithm. International Journal of Neural Systems 19(4), 253–267 (2009)CrossRefGoogle Scholar
  78. 78.
    Huang, G.B., Li, M.B., Chen, L., Siew, C.K.: Incremental extreme learning machine with fully complex hidden nodes. Neurocomputing 71(4-6), 576–583 (2008)CrossRefGoogle Scholar
  79. 79.
    Suresh, S., Savitha, R., Sundararajan, N.: A sequential learning algorithm for a complex-valued self-regulatory resouce allocation network-csran. IEEE Transactions on Neural Networks 22(7), 1061–1072 (2011)CrossRefGoogle Scholar
  80. 80.
    Hirose, A.: Complex-valued neural networks for more fertile electronics. Journal of the Institute of Electronics, Information and Communication Engineers (IEICE) 87(6), 447–449 (2004)Google Scholar
  81. 81.
    Hirose, A.: Complex-valued Neural Networks: Theories and Applications. Series on Innovative Intelligence, vol. 5. World Scientific Publishing Company, Singapore (2004)Google Scholar
  82. 82.
    Cha, I., Kassam, S.A.: Channel equalization using adaptive complex radial basis function networks. IEEE Journal on Selected Areas in Communications 13(1), 122–131 (1995)CrossRefGoogle Scholar
  83. 83.
    Pandey, R.: Feedforward neural network for blind equalization with PSK signals. Neural Computing and Applications 14(4), 290–298 (2005)CrossRefGoogle Scholar
  84. 84.
    Patra, J.C., Pal, R.N., Baliarsingh, R., Panda, G.: Nonlinear channel equalization for QAM constellation using artificial neural networks. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics 29(2), 262–271 (1999)CrossRefGoogle Scholar
  85. 85.
    Du, K.L., Lai, A.K.Y., Cheng, K.K.M., Swamy, M.N.S.: Neural methods for antenna array signal processing: A review. Signal Processing 82(4), 547–561 (2002)CrossRefzbMATHGoogle Scholar
  86. 86.
    Bregains, J.C., Ares, F.: Analysis, synthesis and diagnosis of antenna arrays through complex-valued neural networks. Microwave and Optical Technology Letters 48(8), 1512–1515 (2006)CrossRefGoogle Scholar
  87. 87.
    Yang, W.H., Chan, K.K., Chang, P.R.: Complex-valued neural network for direction of arrival estimation. Electronics Letters 30(7), 574–575 (1994)CrossRefGoogle Scholar
  88. 88.
    Shen, C., Lajos, H., Tan, S.: Symmetric complex-calued RBF receiver for multiple-antenna-aided wireless systems. IEEE Transactions on Neural Networks 19(9), 1659–1665 (2008)CrossRefGoogle Scholar
  89. 89.
    Suksmono, A.B., Hirose, A.: Intelligent beamforming by using a complex-valued neural network. Journal of Intelligent and Fuzzy Systems 15(3-4), 139–147 (2004)Google Scholar
  90. 90.
    Amin, M.F., Murase, K.: Single-layered complex-valued neural network for real-valued classification problems. Neurocomputing 72(4-6), 945–955 (2009)CrossRefGoogle Scholar
  91. 91.
    Buchholz, S., Bihan, N.L.: Polarized signal classification by complex and quaternionic multi-layer perceptron. International Journal of Neural Systems 18(2), 75–85 (2008)CrossRefGoogle Scholar
  92. 92.
    Ozbay, Y., Kara, S., Latifoglu, F., Ceylan, R., Ceylan, M.: Complex-valued wavelet artificial neural network for doppler signals classifying. Artificial Intelligence in Medicine 40(2), 143–156 (2007)CrossRefGoogle Scholar
  93. 93.
    Ceylan, M., Ceylan, R., Ozbay, Y., Kara, S.: Application of complex discrete wavelet transform in classification of doppler signals using complex-valued artificial neural network. Artificial Intelligence in Medicine 44(1), 65–76 (2008)CrossRefGoogle Scholar
  94. 94.
    Sinha, N., Saranathan, M., Ramakrishna, K.R., Suresh, S.: Parallel magnetic resonance imaging using neural networks. In: IEEE International Conference on Image Processing (ICIP 2007), vol. 3, pp. 149–152 (2007)Google Scholar
  95. 95.
    Aizenberg, I., Moraga, C.: Multilayer feedforward neural network based on multi-valued neurons (MLMVN) and a backpropagation learning algorithm. Soft Computing 11(2), 169–183 (2007)CrossRefGoogle Scholar
  96. 96.
    Aizenberg, I., Moraga, C., Paliy, D.: A feedforward neural network based on multi-valued neurons. In: Computational Intelligence, Theory and Applications. Advances in Soft Computing, XIV, pp. 599–612. Springer, Berlin (2005)CrossRefGoogle Scholar
  97. 97.
    Aizenberg, I., Aizenberg, N.: Pattern Recognition Using Neural Network Based on Multi-Valued Neurons. In: Mira, J. (ed.) IWANN 1999. LNCS, vol. 1607, pp. 383–392. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  98. 98.
    Aizenberg, I., Paliy, D.V., Zurada, J.M., Astola, J.T.: Blur identification by multilayer neural network based on multivalued neurons. IEEE Transactions on Neural Networks 19(5), 883–898 (2008)CrossRefGoogle Scholar
  99. 99.
    Amin, M.F., Islam, M.M., Murase, K.: Ensemble of single-layered complex-valued neural networks for classification tasks. Neurocomputing 72(10-12), 2227–2234 (2009)CrossRefGoogle Scholar
  100. 100.
    Noest, A.J.: Phasor neural networks. Neural Information Processing Systems 2, 584–591 (1989), Online Journal, Google Scholar
  101. 101.
    Kobayashi, M.: Pseudo-relaxation learning algorithm for complex-valued associative memory. International Journal of Neural Systems 18(2), 147–156 (2008)CrossRefGoogle Scholar
  102. 102.
    Muezzinoglu, M.K., Guzelis, C., Zurada, J.M.: A new design method for the complex-valued multistate Hopfield associative memory. IEEE Transactions on Neural Networks 14(4), 891–899 (2003)CrossRefGoogle Scholar
  103. 103.
    Kawata, S., Hirose, A.: Frequency-multiplexing ability of complex-valued Hebbian learning in logic gates. International Journal of Neural Systems 18(2), 173–184 (2008)CrossRefGoogle Scholar
  104. 104.
    Isokawa, T., Nishimura, H., Kamiura, N., Matsui, N.: Associative memory in quaternionic Hopfield neural network. International Journal of Neural Systems 18(2), 135–145 (2008)CrossRefGoogle Scholar
  105. 105.
    Tanaka, G., Aihara, K.: Complex-valued multistate associative memory with nonlinear multilevel functions for gray-level image reconstruction. IEEE Transactions on Neural Networks 20(9), 1463–1473 (2009)CrossRefGoogle Scholar
  106. 106.
    Pande, A., Goel, V.: Complex-valued neural network in image recognition: A study on the effectiveness of radial basis function. Proceedings of World Academy of Science, Engineering and Technology 20, 220–225 (2007)Google Scholar

Copyright information

© Springer-Verlag GmbH Berlin Heidelberg 2013

Authors and Affiliations

  • Sundaram Suresh
    • 1
  • Narasimhan Sundararajan
    • 2
  • Ramasamy Savitha
    • 1
  1. 1.School of Computer EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.School of Electrical and Electronics EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations