Modeling Surface Reactions II

Part of the Lecture Notes in Physics book series (LNP, volume 856)

Abstract

The way to model many processes for kinetic Monte Carlo simulations is straightforward. There are however also processes that one encounters regularly and for which there are more modeling options and for which the best is not always clear. We discuss here several of them. We look at how to handle site blocking by large adsorbates and other cases with strong repulsion. We show several ways to implement finite lateral interactions. Fast diffusion and other fast processes are shown to be not necessarily a hindrance for efficient simulations. Some fast processes can even be combined with slower processes in one effective process. Tagging adsorbates is introduced to simulate isotope experiments and to obtain information on diffusion. Our two-dimensional modeling framework is shown to be capable to deal with simulating reactions on nanoparticles. Non-physical processes are shown to be useful to create the initial configuration of a kinetic Monte Carlo simulation.

Keywords

Lattice Point Fast Process Lateral Interaction Vacant Site Neighboring Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.G.M. Hermse, A.P.J. Jansen, in Catalysis, vol. 19, ed. by J.J. Spivey, K.M. Dooley (Royal Society of Chemistry, London, 2006) Google Scholar
  2. 2.
    J.N. Murrell, S. Carter, P. Huxley, S.C. Farantos, A.J.C. Varandas, Molecular Potential Energy Functions (Wiley-Interscience, Chichester, 1984) Google Scholar
  3. 3.
    A. van der Walle, G. Ceder, J. Phase Equilibria, 23, 348 (2002) CrossRefGoogle Scholar
  4. 4.
    V. Blum, A. Zunger, Phys. Rev. B 69, 020103(R) (2004) ADSCrossRefGoogle Scholar
  5. 5.
    A.P.J. Jansen, W.K. Offermans, in Computational Science and Its Applications—ICCSA-2005. LNCS, vol. 3480, ed. by O. Gervasi (Springer, Berlin, 2005) Google Scholar
  6. 6.
    Y. Zhang, V. Blum, K. Reuter, Phys. Rev. B 75, 235406 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    D.M. Hawkins, J. Chem. Inf. Comput. Sci. 44, 1 (2004) MathSciNetCrossRefGoogle Scholar
  8. 8.
    A.P.J. Jansen, C. Popa, Phys. Rev. B 78, 085404 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    N.A. Zarkevich, D.D. Johnson, Phys. Rev. Lett. 92, 255702 (2004) ADSCrossRefGoogle Scholar
  10. 10.
    R. Drautz, A. Díaz-Ortiz, Phys. Rev. B 73, 224207 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    D.E. Nanu, Y. Deng, A.J. Böttger, Phys. Rev. B 74, 014113 (2006) ADSCrossRefGoogle Scholar
  12. 12.
    T. Mueller, G. Ceder, Phys. Rev. B 80, 024103 (2009) ADSCrossRefGoogle Scholar
  13. 13.
    T. Mueller, G. Ceder, Phys. Rev. B 82, 184107 (2010) ADSCrossRefGoogle Scholar
  14. 14.
    Carlos is a general-purpose program, written in C by J.J. Lukkien, for simulating reactions on surfaces that can be represented by regular lattices: an implementation of the First Reaction Method, the Variable Step Size Method, and the Random Selection Method. http://www.win.tue.nl/~johanl/projects/Carlos/
  15. 15.
    C.G.M. Hermse, A.P. van Bavel, A.P.J. Jansen, L.A.M.M. Barbosa, P. Sautet, R.A. van Santen, J. Phys. Chem. B 108, 11035 (2004) CrossRefGoogle Scholar
  16. 16.
    C.G.M. Hermse, F. Frechard, A.P. van Bavel, J.J. Lukkien, J.W. Niemantsverdriet, R.A. van Santen, A.P.J. Jansen, J. Chem. Phys. 118, 7081 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    D.R. Mason, R.E. Rudd, A.P. Sutton, Comput. Phys. Commun. 160, 140 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    J.H. Larsen, I. Chorkendorff, Surf. Sci. Rep. 35, 163 (2000) CrossRefGoogle Scholar
  19. 19.
    I.M. Ciobîcã, F. Frechard, A.P.J. Jansen, R.A. van Santen, in Studies in Surfaces Science and Catalysis, vol. 133, ed. by G.F. Froment, K.C. Waugh (Elsevier, Amsterdam, 2001), pp. 221–228 Google Scholar
  20. 20.
    I.M. Ciobîcã, F. Frechard, C.G.M. Hermse, A.P.J. Jansen, R.A. van Santen, in Surface Chemistry and Catalysis, ed. by A.F. Carley, P.R. Davies, G.J. Hutchings, M.S. Spencer (Kluwer Academic/Plenum, New York, 2001) Google Scholar
  21. 21.
    J.M. Thomas, W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (VCH, Weinheim, 1997) Google Scholar
  22. 22.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ST/SKAEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations