How to Get Kinetic Parameters

  • A. P. J. Jansen
Part of the Lecture Notes in Physics book series (LNP, volume 856)


This chapter shows how rate constants can either be calculated or be derived from experimental results. Calculating rate constants involves determining the initial and the transition state of a process, the energies of these states, and their partition functions. We show that the general expression for the partition functions can often be simplified when a degree of freedom is a vibration, a rotation, or a free translation. Recipes can be given for how to combine partition functions to get rate constants for processes like Langmuir–Hinshelwood and Eley–Rideal reactions, adsorption and desorption, and diffusion. The phenomenological or macroscopic equation is the essential equation to get rate constants from experiments. It is shown how to use it for simple desorption, simple and dissociative adsorption, uni- and bimolecular reactions, and diffusion. Lateral interactions can affect rate constants substantially, but because they are relatively weak, special attention needs to be given to the reliability of calculations of these interactions. Cross validation and Bayesian model selection are discussed in relation to the cluster expansion for these interactions.


Partition Function Adsorption Energy Lateral Interaction Cluster Expansion Sticking Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.G.M. Hermse, F. Frechard, A.P. van Bavel, J.J. Lukkien, J.W. Niemantsverdriet, R.A. van Santen, A.P.J. Jansen, J. Chem. Phys. 118, 7081 (2003) ADSCrossRefGoogle Scholar
  2. 2.
    R.A. van Santen, J.W. Niemantsverdriet, Chemical Kinetics and Catalysis (Plenum, New York, 1995) Google Scholar
  3. 3.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1989) Google Scholar
  4. 4.
    D.G. Truhlar, A.D. Isaacson, B.C. Garrett, in Theory of Chemical Reaction Dynamics, Part IV, ed. by M. Baer (CRC Press, Boca Raton, 1985), pp. 65–138 Google Scholar
  5. 5.
    C.S. Tautermann, D.C. Clary, J. Chem. Phys. 122, 134702 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    C.S. Tautermann, D.C. Clary, Phys. Chem. Chem. Phys. 8, 1437 (2006) CrossRefGoogle Scholar
  7. 7.
    D.A. McQuarrie, Statistical Mechanics (Harper, New York, 1976) Google Scholar
  8. 8.
    A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1961) Google Scholar
  9. 9.
    H. Goldstein, Classical Mechanics (Addison-Wesley, Amsterdam, 1981) Google Scholar
  10. 10.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision b.04. Gaussian, Inc., Pittsburgh, PA (2003) Google Scholar
  11. 11.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, New York, 1965) Google Scholar
  12. 12.
    A. Szabo, N.S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1982) Google Scholar
  13. 13.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, London, 2001) Google Scholar
  14. 14.
    A.R. Leach, Molecular Modelling. Principles and Applications (Longman, Singapore, 1996) Google Scholar
  15. 15.
    W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH, New York, 2000) Google Scholar
  16. 16.
    C.J. Cramer, Essentials of Computational Chemistry (Wiley, Chichester, 2004) Google Scholar
  17. 17.
    R.A. van Santen, M. Neurock, Molecular Heterogeneous Catalysis (Wiley-VCH, Weinheim, 2006) CrossRefGoogle Scholar
  18. 18.
    O. Trushin, A. Karim, A. Kara, T.S. Rahman, Phys. Rev. B 72, 115401 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    K. Sastry, D.D. Johnson, D.E. Goldberg, P. Bellon, Phys. Rev. B 72, 085438 (2005) ADSCrossRefGoogle Scholar
  20. 20.
    N. Castin, L. Malerba, Nucl. Instrum. Methods Phys. Res., Sect. B, Beam Interact. Mater. Atoms 267, 3148 (2009) ADSCrossRefGoogle Scholar
  21. 21.
    G. Henkelman, H. Jónsson, J. Chem. Phys. 111, 7010 (1999) ADSCrossRefGoogle Scholar
  22. 22.
    G. Henkelman, G. Jóhannesson, H. Jónsson, in Progress in Theoretical Chemistry and Physics, ed. by S.D. Schwarts (Kluwer Academic, London, 2000) Google Scholar
  23. 23.
    G. Mills, H. Jónsson, G.K. Schenter, Surf. Sci. 324, 305 (1995) ADSCrossRefGoogle Scholar
  24. 24.
    C. Popa, W.K. Offermans, R.A. van Santen, A.P.J. Jansen, Phys. Rev. B 74, 155428 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    C. Popa, R.A. van Santen, A.P.J. Jansen, J. Phys. Chem. C 111, 9839 (2007) CrossRefGoogle Scholar
  26. 26.
    D. Curulla, A.P. van Bavel, J.W. Niemantsverdriet, ChemPhysChem 6, 473 (2005) CrossRefGoogle Scholar
  27. 27.
    A.P. van Bavel, Understanding and quantifying interactions between adsorbates: CO, NO, and N- and O-atoms on Rh(100). Ph.D. thesis, Eindhoven University of Technology, Eindhoven (2005) Google Scholar
  28. 28.
    C. Popa, A.P. van Bavel, R.A. van Santen, C.F.J. Flipse, A.P.J. Jansen, Surf. Sci. 602, 2189 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    D.H. Wei, D.C. Skelton, S.D. Kevan, Surf. Sci. 381, 49 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    J.N. Murrell, S. Carter, P. Huxley, S.C. Farantos, A.J.C. Varandas, Molecular Potential Energy Functions (Wiley-Interscience, Chichester, 1984) Google Scholar
  31. 31.
    A. van der Walle, G. Ceder, J. Phase Equilibria 23, 348 (2002) CrossRefGoogle Scholar
  32. 32.
    V. Blum, A. Zunger, Phys. Rev. B 69, 020103(R) (2004) ADSCrossRefGoogle Scholar
  33. 33.
    A.P.J. Jansen, W.K. Offermans, in Computational Science and Its Applications—ICCSA-2005. LNCS, vol. 3480, ed. by O. Gervasi (Springer, Berlin, 2005) Google Scholar
  34. 34.
    C.G.M. Hermse, A.P.J. Jansen, in Catalysis, vol. 19, ed. by J.J. Spivey, K.M. Dooley (Royal Society of Chemistry, London, 2006) Google Scholar
  35. 35.
    Y. Zhang, V. Blum, K. Reuter, Phys. Rev. B 75, 235406 (2007) ADSCrossRefGoogle Scholar
  36. 36.
    D.M. Hawkins, J. Chem. Inf. Comput. Sci. 44, 1 (2004) MathSciNetCrossRefGoogle Scholar
  37. 37.
    A.P.J. Jansen, C. Popa, Phys. Rev. B 78, 085404 (2008) ADSCrossRefGoogle Scholar
  38. 38.
    N.A. Zarkevich, D.D. Johnson, Phys. Rev. Lett. 92, 255702 (2004) ADSCrossRefGoogle Scholar
  39. 39.
    R. Drautz, A. Díaz-Ortiz, Phys. Rev. B 73, 224207 (2006) ADSCrossRefGoogle Scholar
  40. 40.
    D.E. Nanu, Y. Deng, A.J. Böttger, Phys. Rev. B 74, 014113 (2006) ADSCrossRefGoogle Scholar
  41. 41.
    T. Mueller, G. Ceder, Phys. Rev. B 80, 024103 (2009) ADSCrossRefGoogle Scholar
  42. 42.
    E.T. Jaynes, G.L. Bretthorst, Probability Theory: The Logic of Science (Cambridge University Press, Cambridge, 2003) CrossRefGoogle Scholar
  43. 43.
    A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis (Chapman & Hall/CRC, Boca Raton, 2003) Google Scholar
  44. 44.
    D. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial (Oxford University Press, Oxford, 2006) Google Scholar
  45. 45.
    B. Hammer, Phys. Rev. B 63, 205423 (2001) ADSCrossRefGoogle Scholar
  46. 46.
    J.N. Brønsted, Chem. Rev. 5, 231 (1928) CrossRefGoogle Scholar
  47. 47.
    M.G. Evans, M. Polanyi, Trans. Faraday Soc. 34, 11 (1938) CrossRefGoogle Scholar
  48. 48.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) MathSciNetADSCrossRefGoogle Scholar
  49. 49.
    W. Kohn, L.S. Sham, Phys. Rev. 140, A1133 (1965) MathSciNetADSCrossRefGoogle Scholar
  50. 50.
    R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989) Google Scholar
  51. 51.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North-Holland, Amsterdam, 1981) zbMATHGoogle Scholar
  52. 52.
    A.P.J. Jansen, Comput. Phys. Commun. 86, 1 (1995) ADSCrossRefGoogle Scholar
  53. 53.
    A.M. de Jong, J.W. Niemantsverdriet, Surf. Sci. 233, 355 (1990) CrossRefGoogle Scholar
  54. 54.
    J.M. Thomas, W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (VCH, Weinheim, 1997) Google Scholar
  55. 55.
    G.A. Somorjai, Introduction to Surface Chemistry and Catalysis (Wiley, Chichester, 1993) Google Scholar
  56. 56.
    R. Becker, Theorie der Wärme (Springer, Berlin, 1985) CrossRefGoogle Scholar
  57. 57.
    A. Cassuto, D.A. King, Surf. Sci. 102, 388 (1981) ADSCrossRefGoogle Scholar
  58. 58.
    V.P. Zhdanov, Elementary Physicochemical Processes on Solid Surfaces (Plenum, London, 1991) Google Scholar
  59. 59.
    J. Mai, V.N. Kuzovkov, W. von Niessen, Phys. Rev. E 48, 1700 (1993) ADSCrossRefGoogle Scholar
  60. 60.
    J. Mai, V.N. Kuzovkov, W. von Niessen, Physica A 203, 298 (1994) ADSCrossRefGoogle Scholar
  61. 61.
    J. Mai, V.N. Kuzovkov, W. von Niessen, J. Chem. Phys. 100, 6073 (1994) ADSCrossRefGoogle Scholar
  62. 62.
    E.A. Kotomin, V.N. Kuzovkov, Modern Aspects of Diffusion-Controlled Reactions: Cooperative Phenomena in Bimolecular Processes (Elsevier, Amsterdam, 1996) Google Scholar
  63. 63.
    O. Kortlüke, V.N. Kuzovkov, W. von Niessen, Chem. Phys. Lett. 275, 85 (1997) ADSCrossRefGoogle Scholar
  64. 64.
    S. Kirkpatric, C.D. Gelatt Jr., M.P. Vecchi, Science 220, 671 (1983) MathSciNetADSCrossRefGoogle Scholar
  65. 65.
    D.A. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning (Addison-Wesley, Reading, 1989) zbMATHGoogle Scholar
  66. 66.
    H.P. Schwefel, Evolution and Optimum Seeking (Wiley, Chichester, 1995) Google Scholar
  67. 67.
    Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer, Berlin, 1999) Google Scholar
  68. 68.
    W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone, Genetic Programming: An Introduction (Morgan Kaufmann, San Francisco, 1998) zbMATHCrossRefGoogle Scholar
  69. 69.
    D. Corne, M. Dorigo, F. Glover, New Ideas in Optimization (McGraw-Hill, London, 1999) Google Scholar
  70. 70.
    E. Bonabeau, M. Doriga, G. Theraulaz, Swarm Intelligence: From Natural to Artificial Systems (Oxford University Press, New York, 1999) zbMATHGoogle Scholar
  71. 71.
    A.P.J. Jansen, Phys. Rev. B 69, 035414 (2004) ADSCrossRefGoogle Scholar
  72. 72.
    M.M.M. Jansen, C.G.M. Hermse, A.P.J. Jansen, Phys. Chem. Chem. Phys. 12, 8053 (2010) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.ST/SKAEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations