Capsules and Closures: A Small-Step Approach

  • Jean-Baptiste Jeannin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7230)


We present a side by side comparison of Capsules and Closures, including a proof of bisimilarity, using small-step semantics. A similar proof was presented in [8], using big-step semantics. However, while big-step semantics only allow to talk about final results of terminating computations, the use of small-step semantics allows to prove a stronger bisimilarity involving every step of the computation and thus also applicable to infinite computations.


Free Variable Partial Function Imperative Feature Variable Assignment Game Semantic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aboul-Hosn, K.: Programming with private state. Honors Thesis, The Pennsylvania State University (December 2001),
  2. 2.
    Aboul-Hosn, K., Kozen, D.: Relational semantics of local variable scoping. Tech. Rep. 2005-2000, Cornell University (2005),
  3. 3.
    Aboul-Hosn, K., Kozen, D.: Relational Semantics for Higher-Order Programs. In: Uustalu, T. (ed.) MPC 2006. LNCS, vol. 4014, pp. 29–48. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for general references. In: LICS 1998: Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science, pp. 334–344. IEEE Computer Society, Washington, DC (1998)Google Scholar
  5. 5.
    Abramsky, S., McCusker, G.: Linearity, sharing and state: a fully abstract game semantics for idealized ALGOL with active expressions. Electr. Notes Theor. Comput. Sci. 3 (1996)Google Scholar
  6. 6.
    Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control and state. Theoretical Computer Science 103, 235–271 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Halpern, J.Y., Meyer, A.R., Trakhtenbrot, B.A.: The semantics of local storage, or what makes the free-list free? In: Proc. 11th ACM Symp. Principles of Programming Languages (POPL 1984), New York, NY, USA, pp. 245–257 (1984)Google Scholar
  8. 8.
    Jeannin, J.B.: Capsules and closures. In: Mislove, M., Ouaknine, J. (eds.) Proc. 27th Conf. Math. Found. Programming Semantics (MFPS XXVII). Elsevier Electronic Notes in Theoretical Computer Science, Pittsburgh, PA (2011)Google Scholar
  9. 9.
    Jeannin, J.B., Kozen, D.: Computing with capsules. Tech. Rep., Computing and Information Science, Cornell University (January 2011),
  10. 10.
    Laird, J.: A Game Semantics of Local Names and Good Variables. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 289–303. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Mason, I.A., Talcott, C.L.: References, local variables and operational reasoning. In: Seventh Annual Symposium on Logic in Computer Science, pp. 186–197. IEEE (1992),
  12. 12.
    Mason, I., Talcott, C.: Programming, transforming, and proving with function abstractions and memoriesGoogle Scholar
  13. 13.
    Mason, I., Talcott, C.: Axiomatizing operational equivalence in the presence of side effects. In: IEEE Fourth Annual Symposium on Logic in Computer Science, pp. 284–293. IEEE Computer Society Press (1989)Google Scholar
  14. 14.
    Mason, I., Talcott, C.: Equivalence in functional languages with effects (1991)Google Scholar
  15. 15.
    Milne, R., Strachey, C.: A Theory of Programming Language Semantics. Halsted Press, New York (1977)Google Scholar
  16. 16.
    Moggi, E.: Notions of computation and monads. Information and Computation 93(1) (1991)Google Scholar
  17. 17.
    Pitts, A.M.: Operationally-based theories of program equivalence. In: Dybjer, P., Pitts, A.M. (eds.) Semantics and Logics of Computation, pp. 241–298. Publications of the Newton Institute, Cambridge University Press (1997),
  18. 18.
    Pitts, A.M., Stark, I.D.B.: Operational reasoning in functions with local state. In: Gordon, A.D., Pitts, A.M. (eds.) Higher Order Operational Techniques in Semantics, pp. 227–273. Cambridge University Press (1998),
  19. 19.
    Pitts, A.M., Stark, I.D.B.: Observable Properties of Higher Order Functions that Dynamically Create Local Names, or What’s New? In: Borzyszkowski, A.M., Sokolowski, S. (eds.) MFCS 1993. LNCS, vol. 711, pp. 122–141. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  20. 20.
    Scott, D.S.: Mathematical concepts in programmng language semantics. In: Proc. 1972 Spring Joint Computer Conferences, pp. 225–234. AFIPS Press, Montvale (1972)Google Scholar
  21. 21.
    Stoy, J.E.: Denotational Semantics: The Scott-Strachey Approach to Programming Language Theory. MIT Press, Cambridge (1981)zbMATHGoogle Scholar
  22. 22.
    Sussman, G.J., Steele, G.L.: Scheme: A interpreter for extended lambda calculus. Higher-Order and Symbolic Computation 11, 405–439 (1998),, 10.1023/A:1010035624696zbMATHCrossRefGoogle Scholar
  23. 23.
    Winskel, G.: The Formal Semantics of Programming Languages. MIT Press (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jean-Baptiste Jeannin
    • 1
  1. 1.Department of Computer ScienceCornell UniversityIthacaUSA

Personalised recommendations