Neoproterozoic to Lower Paleozoic Sequences of the Congo Shield: Comparisons Between the Congo and Its Peripheral Basins

  • Étienne Kadima Kabongo
  • Damien Delvaux
  • Michel Everaerts
  • Mwene Ntabwoba Stanislas Sebagenzi
  • Francis Lucazeau
Part of the Regional Geology Reviews book series (RGR)


The Congo Basin (CB) was initiated during a Neoproterozoic intracratonic rifting process across the Congo Shield, possibly related to the break-up of the Rodinia Supercontinent. The Neoproterozoic history of the CB remains poorly constrained because it is largely concealed by Phanerozoic sequences and is thus accessible only by drilling and geophysical investigations. Neoproterozoic basins peripheral to the CB, however, share first-order similarities in their stratigraphic successions: an initial coarse clastic sequence followed by a thick carbonate sequences and terminating by a dominantly siliciclastic sequence. The subsequent transition to the Lower Paleozoic is influenced by regional Pan-African deformation and molasses-like foreland basin sediment-fill. The Neoproterozoic stratigraphy and structure beneath the CB can be tested also using data from two fully cored stratigraphic wells (Samba: 2,038 m and Dekese: 1,836 m), and two exploration wells (Gilson-1: 4,563 m and Mbandaka-1: 4,350 m), seismic refraction and reflection profiles, gravimetric and magnetic data. Synthesizing this data, we show that the CB shares a similar early evolution as its flanking basins in that they all initiated in extensional tectonic environments and were subsequently affected by compressional deformation during late Neoproterozoic to Early Cambrian Pan-African orogenesis.


Seismic Profile Congo Basin Seismic Unit Residual Gravity Anomaly Regional Unconformity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Frame Agreement program MRAC-DGCD under project S1_RDC_Geodyn_UNILU. E. Kadima and S. Sebagenzi gratefully acknowledge this program and the Royal Museum for Central Africa for coordinating this project. C. Blanpied is thanked for further discussion on the interpretation of seismic profiles. M. de Wit and B. Linol are thanked for the critical review of several versions of this Ms.


  1. Alvarez P (1995a) Les facteurs de contrôle de la sédimentation du Supergroupe Ouest-congolien (Sud-Congo). Rampe carbonatée et activité biologique au Protérozoïque supérieur. Implication en Afrique centrale (Congo, Zaïre, Gabon, Cameroun, Guinée Equatoriale, Centrafrique). Document BRGM, 239, 273 pGoogle Scholar
  2. Alvarez P (1995b) Evidence for a Neoproterozoic carbonate ramp on the northern edge of the Central African Craton: relations with Late Proterozoic intracratonic troughs. Geol Rund 84:636–648CrossRefGoogle Scholar
  3. Alvarez P, Maurin J-C, Vicat J-P (1995) La Formation de l’Inkisi (Supergroupe Ouest-congolien) en Afrique centrale (Congo et Bas-Zaïre): un delta d’âge Paléozoïque comblant un bassin en extension. J Afr Earth Sci 20:119–131CrossRefGoogle Scholar
  4. Alvarez P (1999) La transition Précambrien-Cambrien en Afrique Centrale. Approche intégrée: Paléoenvironnements et données paléontologiques. Habilitation à diriger des recherches. Université de Poitiers, 1999, 307 pGoogle Scholar
  5. Armitage JJ, Allen PA (2010) Cratonic basins and the long-term subsidence history of continental interiors. J Geol Soc London 167:61–70CrossRefGoogle Scholar
  6. Armstrong RA, Master S, Robb LJ (2005) Geochronology of the Nchanga Granite and constraints on the maximum age of the Katanga Supergroup, Zambian Copperbelt. J Afr Earth Sci 42:32–40CrossRefGoogle Scholar
  7. Batumike MJ, Cailteux JLH, Kampunzu AB (2007) Lithostratigraphy, basin development, base metal deposits, and regional correlations of the Neoproterozoic Nguba and Kundelungu rock successions, central African Copperbelt. Gondwana Res 11(3):432–447CrossRefGoogle Scholar
  8. Batumike J, Griffin W, O'Reilly SY, Belousova EA, Pawlitschek M (2009) Crustal evolution in the central Congo-Kasaï Craton, Luebo, D.R. Congo: insights from zircon U-Pb ages, Hf-isotope and trace-element data. Precambrian Res 170(1–2):107–115CrossRefGoogle Scholar
  9. Batumike MJ, Kampunzu AB, Cailteux J (2006) Petrology and geochemistry of the Neoproterozoic Nguba and Kundelungu Groups, Katangan Supergroup, southeast Congo: implications for provenance, paleoweathering and geotectonic setting. J Afr Earth Sci 44:97–115CrossRefGoogle Scholar
  10. Buiter SJH, Steinberger B, Medvedev S, Tetreault JL (2012) Could the mantle have caused subsidence of the Congo Basin? Tectonophysics 514–517:62–82CrossRefGoogle Scholar
  11. Burke K, Gunnell Y (2008) The African erosion surface: a continental-scale synthesis of geomorphology, tectonics, and environmental change over the past 180 million years. Geol Soc Am Mem 201Google Scholar
  12. Cahen L (1954) Géologie du Congo belge. Vaillant-Caramanne, Liège, 577pGoogle Scholar
  13. Cahen L, Ferrand JJ, Haarsma MJF, Lepersonne J, Verbeek Th (1959) Description du Sondage de Samba. Ann. Mus. Roy. Congo belge, Tervuren (Belgique), série in-8, Sci Géol 29, 210 ppGoogle Scholar
  14. Cahen L, Ferrand JJ, Haarsma MJF, Lepersonne J, Verbeek Th (1960) Description du Sondage de Dekese. Ann. Mus. Roy. Congo belge, Tervuren (Belgique), série in-8, Sci Géol 34, 115 ppGoogle Scholar
  15. Cahen L, Snelling NJ, Delhal J, Vail JR, Bonhomme M, Ledent D (1984) Geochronology and evolution of Africa. Clarendon, Oxford, 512 pGoogle Scholar
  16. Cailteux J (1994) Lithostratigraphy of the Neoproterozoic Shaba-type (Zaïre) Roan Supergroup and metallogenesis of associated stratiform mineralisation. J Afr Earth Sci 19:279–301CrossRefGoogle Scholar
  17. Cailteux J, Kampunzu AB, Lerouge C, Kaputo AK, Milesi JP (2005) Genesis of sediment-hosted stratiform copper-cobalt deposits, Central African Copperbelt. J Afr Earth Sci 42:134–158CrossRefGoogle Scholar
  18. Cailteux J, Kampunzu AB, Lerouge C (2007) The Neoproterozoic Mwashya-Kasuki sedimentary rock succession in the central African copperbelt, its Cu-Co mineralisation, and regional correlations. Gondwana Res 11:414–431CrossRefGoogle Scholar
  19. Colin JP (1994) Mesozoic-Cenozoic lacustrine sediments of the Zaïre Interior Basin. In: Gierlowski-Kordesch E, Kelts K (eds) Global geological record of lake basins, vol 1. Cambridge University Press, pp 31–36Google Scholar
  20. Crosby AG, Fishwick S, White N (2010) Structure and evolution of the intracratonic Congo Basin. Geochem Geophys Geosyst 11: Q06010Google Scholar
  21. Daly MC, Lawrence SR, Diemu-Tshiband K, Matouana B (1992) Tectonic evolution of the Cuvette Centrale, Zaire. J Geol Soc London 149:539–546CrossRefGoogle Scholar
  22. Daly MC, Lawrence SR, Kimun’a D, Binga M (1991) Late Paleozoic deformation in central Africa: a result of distant collision? Nature 350:605–607CrossRefGoogle Scholar
  23. Deblond A, Punzalan LE, Boven A, Tack L (2001) The Malagarazi supergroup of southeast Burundi and its correlative Bukoba supergroup of northwest Tazania: Neo- and Meso-proterozoic constraints from Ar-Ar ages of mafic intrusive rocks. J Afr Earth Sci 32:435–449CrossRefGoogle Scholar
  24. Delpomdor F (2013) Sedimentology, geochemistry and depositional environments of the 1175-570 Ma carbonate series, Sankuru-Mbuji-Mayi-Lomami-Lovoy and Bas-Congo basins, Democratic Republic of Congo - New insights into Late Mesoproterozoic and Neoproterozoic glacially- and/or tectonically-influenced sedimentary systems in equatorial Africa. PhD thesis, ULB, Brussels, 497 pGoogle Scholar
  25. Delpomdor F, Blanpied C, Virgone A, Préat A (2013a) Paleoenvironments in Meso-Neoproterozoic carbonates of the Mbuji-Mayi Supergroup (Democratic Republic of Congo) - Microfacies analysis combined with C-O-Sr isotopes, major-trace elements and REE+Y distributions. J Afr Earth Sci 88:72–100CrossRefGoogle Scholar
  26. Delpomdor F, Linnemann U, Boven A, Gärtner A, Travin A, Blanpied C, Virgone A, Jelsma H, Préat A (2013b) Depositional age, provenance, and tectonic and paleoclimatic settings of the late Mesoproterozoic–middle Neoproterozoic Mbuji-Mayi Supergroup, Democratic Republic of Congo. Palaeogeogr Palaeoclimatol Palaeoecol 389:35–47CrossRefGoogle Scholar
  27. Delpomdor F, Kant F, Préat A (2014) Neoproterozoic uppermost Haut-Shiloango Subgroup (West Congo Supergroup, Democratic Republic of Congo): Misinterpreted stromatolites and implications for sea-level fluctuations before the onset of the Marinoan glaciation. J Afr Earth Sci 90:49–63CrossRefGoogle Scholar
  28. De Paepe P, Tack L, Moens L, van de Velde P (1991) The basic magmatism of upper Proterozoic in southeast Burundi. Musée royal de l'Afrique Centrale, Tervuren, Belgique, rapport annuel 1989–1990:85–104Google Scholar
  29. De Waele B, Johnson SP, Pisarevsky SA (2008) Paleoproterozoic to Neoproterozoic growth and evolution of the eastern Congo Craton: its role in the Rodinia puzzle. Precambrian Res 160:127–141CrossRefGoogle Scholar
  30. Downey NJ, Gurnis M (2009) Instantaneous dynamics of the cratonic Congo Basin. J Geophys Res Solid Earth 114, B06401CrossRefGoogle Scholar
  31. ECL (1988) Hydrocarbon potential of Cuvette Centrale (Republic of Zaire). Exploration Consultants Limited, Cellule Technique Pétrolière, Pétrozaire, unpublished report, 41pp. + figures, tables, appendices and enclosures.Google Scholar
  32. El Desouky HA, Muchez P, Dewaele S, Boutwooe A, Tyler R (2008) Postorogenic Origin of the Stratiform Cu Mineralization at Lufukwe, Lufilian Foreland, Democratic Republic of Congo. Econ Geol 103:555–582CrossRefGoogle Scholar
  33. Esso Zaire SARL (1981a) Geological completion report. Mbandaka-1. Unpublished internal reportGoogle Scholar
  34. Esso Zaire SARL (1981b) Geological completion report. Gilson-1. Unpublished internal reportGoogle Scholar
  35. Evrard P (1957) Les recherches géophysiques et géologiques et les travaux de sondage dans la Cuvette congolaise. Académie Royale des Sciences Coloniale., Sc. Techn. Bruxelles, VII(1), 62 pGoogle Scholar
  36. Evrard P (1960) Sismique. (Résultat scientifique des missions du Syndicat pour l’étude géologique et minière de Cuvette congolaise). Ann Mus royal Afrique centrale, Tervuren (Belgique), série in-8, Sci Géol, 33, 87 pGoogle Scholar
  37. Frimmel H, Tack L, Basei M, Nutman A, Boven A (2006) Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. J Afr Earth Sci 46:221–239CrossRefGoogle Scholar
  38. Hanson RE, Wardlaw MS, Wilson TJ, Mwale G (1993) U-Pb zircon ages from the Hook granite massif and Mwembeshi dislocation: constraints on Pan-African deformation, plutonism, and transcurrent shearing in central Zambia. Precambrian Res 63:189–206CrossRefGoogle Scholar
  39. Hanson RE, Wilson TJ, Munyanyiwa H (1994) Geologic evolution of the Neoproterozoic Zambezi orogenic belt in Zambia. J Afr Earth Sci 18:135–150CrossRefGoogle Scholar
  40. Hartley RW, Allen PA (1994) Interior cratonic basins of Africa: relation to continental break-up and role of mantle convection. Basin Res 6:95–113CrossRefGoogle Scholar
  41. Hartley R, Watts AB, Fairhead JD (1996) Isostasy of Africa. Earth Planet Sci Lett 137:1–18CrossRefGoogle Scholar
  42. Heine C, Müller RD, Steinberger B, Torsvik TH (2008) Subsidence in intracontinental basins due to dynamic topography. Physics of the Earth and Planetary interoirs. Recent advances in computational geodynamics: theory. Num Appl 1–4:252–264Google Scholar
  43. John T, Schenk V, Mezger K, Tembo F (2004) Timing and PT evolution of whiteschist metamorphism in the Lufilian Arc - Zambezi belt orogen (Zambia): implications for the assembly of Gondwana. J Geol 112:71–90CrossRefGoogle Scholar
  44. Johnson SP, Rivers T, De Waele B (2005) A review of the Mesoproterozoic to Early Paleozoic magmatic and tectonothermal history of Central Southern Africa: Implications for Rodinia and Gondwana. J Geol Soc London 162:433–450CrossRefGoogle Scholar
  45. Johnson SP, De Waele B, Tembo F, Evans D, Iizuka T, Tani K (2007) Geochronology of the Zambezi Supracrustal sequence, southern Zambia: a record of Neoproterozoic divergent processes along the southern margin of the Congo Craton. J Geol 115:355–374CrossRefGoogle Scholar
  46. Jones L, Mathieu PL, Strenger H (1960) Gravimétrie: Les résultats scientifiques des missions du syndicat pour l'étude géologique et minière de la Cuvette Congolaise et travaux connexes. Ann. Mus. Roy. Congo belge, Tervuren (Belgique), série in-8, Sci Géol, 36, 46 ppGoogle Scholar
  47. Kadima EK (2011) Contribution géophysique à la connaissance du bassin de la Cuvette congolaise. Modélisation de la structure sédimentaire, Mécanisme de subsidence et structure de la lithosphère sous-jacente. PhD thesis, University of Lubumbashi, 278 pGoogle Scholar
  48. Kadima E, Delvaux D, Sebagenzi MN, Tack L, Kabeya M (2011a) Structure and geological history of the Congo Basin: an integrated interpretation of gravity, magnetic and reflection seismic data. Basin Res 23:499–527CrossRefGoogle Scholar
  49. Kadima EK, Sebagenzi SMN, Lucazeau F (2011b) A Proterozoic-rift origin for the structure and evolution of the cratonic Congo Basin. Earth Planet Sci Lett 304:240–250CrossRefGoogle Scholar
  50. Kampunzu AB, Cailteux J (1999) Tectonic evolution of the Lufilian Arc during Neoproterozoic Pan African orogenesis. Gondwana Res 2:401–421CrossRefGoogle Scholar
  51. Kampunzu AB, Tembo F, Matheis G, Kapenda D, Huntsman-Mapila P (2009) Geochemistry and tectonic setting of mafic igneous units in the Neoproterozoic Katangan Basin, Central Africa: implication for Rodinia break up. Gondwana Res 3:125–153CrossRefGoogle Scholar
  52. Key RM, Liyungu AK, Njamu FM, Somwe V, Banda J, Mosley PN, Armstrong RA (2001) The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralisation. J Afr Earth Sci 33(3/4):503–528CrossRefGoogle Scholar
  53. Kipata ML (2013) Brittle tectonics in the Lufilian foldand-thrust belt and its foreland. An insight into the stress field record in relation to moving plates (Katanga, DRC). PhD Thesis, KULeuven, 130 pGoogle Scholar
  54. Kipata ML, Delvaux D, Sebagenzi MN, Cailteux J-J, Sintubin M (2013) Brittle tectonic and stress field evolution in the Pan-African Lufilian arc and its foreland (Katanga, DRC): from orogenic compression to extensional collapse, transpressional inversion and transition to rifting. Geol Belg 16(1–2):001–017Google Scholar
  55. Lawrence SR, Makazu MM (1988) Zaire’s Central basin: prospectivity outlook. Oil Gas J 86(38):105–108Google Scholar
  56. Lepersonne J (1974) Carte géologique du Zaïre au 1/2.000.000 et notice explicative. République du Zaïre, Direction de la Géologie, Kinshasa & Mus. Roy. Afr. Centr., TervurenGoogle Scholar
  57. Linol B (2013) Sedimentology and sequence stratigraphy of the Congo and Kalahari basins of South-Central Africa and their evolution during the formation and breakup of West-Gondwana. PhD thesis Nelson Mandela Metropolitan University, South Africa, 370 pGoogle Scholar
  58. Master S, Rainaud C, Armstrong RA, Phillips D, Robb LJ (2005) Provenances ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution. J Afr Earth Sci 42:41–60CrossRefGoogle Scholar
  59. Monié P, Bosch D, Bruguier O, Vauchez A, Rolland Y, Nsungani P, Buta Neto A (2012) The Late Neoproterozoic/Early Palaeozoic evolution of the West Congo Belt of NW Angola: geochronological (U-Pb and Ar-Ar) and petrostructural constraints. Terra Nova 24:238–247. doi: 10.1111/j.1365-3121.2012.01060 CrossRefGoogle Scholar
  60. Pérez-Gussinyé M, Metois M, Fernandez M, Vergés J, Fullea J, Lowry A (2009) Effective elastic thickness of Africa and its relationship to other proxis for lithospheric structure and surface tectonics. Earth Planet Sci Lett 287:152–167CrossRefGoogle Scholar
  61. Poidevin J-L (1976) Les formations du Précambrien supérieur de la région de Bangui (R.C.A.). Bulletin de la Société Géologique de France 18(4):999–1003Google Scholar
  62. Poidevin J-L (1979) Les basaltes et dolérites Précambrien supérieur de la région de Bakouma (Empire centrafricain) 7ème Réunion Annuelle des Sciences de la Terre., Lyon, 374Google Scholar
  63. Poidevin J-L (1985) Le Protérozoïque supérieur de la République Centrafricaine. Ann. Mus. royal Afrique centrale, Tervuren (Belgique), série in-8, Sci Géol, 91, 75p.Google Scholar
  64. Poidevin J-L, Alabert J, et Miauton J-D (1980/1981) Geologie des series du Precambrien superieur de la region de Bakouma (Republique Centrafricaine). Bull. BRGM (2eme ser.) IV(4):311–318Google Scholar
  65. Poidevin J-L (1996) Réponse. Un segment de rampe carbonatee d'age proterozoi'que supérieur au Nord du craton d'Afrique centrale (Sud-Est de la Republique centrafricaine). J Afr Earth Sci 23, 2Google Scholar
  66. Poidevin J-L (2007) Stratigraphie isotopique du strontium et datations des formations carbonatées et glaciogéniques néoprotérozoïques du Nord et de l’Ouest du craton du Congo. Comptes Rendus Geoscience 339:259–273CrossRefGoogle Scholar
  67. Porada H (1989) Pan-african rifting and Orogenesis in Southern to Equatorial Africa and Eastern Brazil. Precambrian Res 44:103–136CrossRefGoogle Scholar
  68. Porada H, Berhorst V (2000) Towards a new understanding of the Neoproterozoic-Early Paleozoic Lufilian and northern Zambezi belts in Zambia and the Democratic Republic of Congo. J Afr Earth Sci 30:727–771CrossRefGoogle Scholar
  69. Priestley K, Mckenzie D, Debayle E, Pilidou S (2008) The Africa upper mantle and its relationship to tectonics and surface geology. Geophys J Int 175(3):1108–1126CrossRefGoogle Scholar
  70. Raucq P (1957) Contribution à la connaissance du Système de la Bushimay. Ann. Mus. Roy. Afr. Cent., Tervuren (Belgique), série in-8, Sci Géol, 18, 427 pGoogle Scholar
  71. Raucq P (1970) Nouvelles acquisitions sur le système de la Bushimay (République démocratique du Congo). Ann. Mus. Roy. Afr. Cent., Tervuren (Belgique), série in-8, Sci Géol, 69, 156 pGoogle Scholar
  72. Ritsema J, van Heijst H (2000) New seismic model of the upper mantle beneath Africa. Geology 28(1):63–68CrossRefGoogle Scholar
  73. Sahagian DL (1993) Structural evolution of African basins: stratigraphic synthesis. Basin Res 5:41–54CrossRefGoogle Scholar
  74. Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J Geophys Res 102:10–039Google Scholar
  75. Stankiewicz J, de Witt M (2013) 3.5 billion years of reshaped Moho, southern Africa. Tectonophysics 609: 675–689Google Scholar
  76. Tack L (1995) The Neoproterozoic Malagarazi supergroup of SE Burundi and its equivalent Bukoban Supergroup in NW Tanzania: a current review. In: Wendorff M, Tack L (eds) Late Proterozoic belts in Central and Southwestern Africa. Annales du Musée royal de l'Afrique Centrale, Sciences Géologiques, pp 121–129Google Scholar
  77. Tack L, Wingate MTD, Liégeois J-P, Fernandez-Alonzo M, Deblond A (2001) Early Neoproterozoic magmatism (1000–910 Ma) of the Zadinian and Mayumbian Groups (Bas-Congo), onset of Rodinia rifting at the western edge of the Congo Craton. Precambrian Res 110:277–306CrossRefGoogle Scholar
  78. Tack L, Delvaux D, Kadima E, Delpomdor F, Tahon A, Dumont P, Hanon M, Fernandez-Alonso M, Baudet D, Dewaele S, Cibambula E, Kanda Nkula V, Mpiana Ch (2008) The 1000 m thick Redbeds sequence of the Congo River Basin (CRB): a generally overlooked testimony in Central Africa of post-Gondwana amalgamation (550) and pre-Karoo break-up (320 Ma). 22nd Colloquium African Geology (CAG22), Hammamet, Tunisia, Abstracts volume, 4–6 November 2008, pp 86–88Google Scholar
  79. Tack L, Wingate MTD, De Waele B, Meert J, Belousova E, Griffin A, Tahon A, Fernadez-Alonso M (2010) The 1375 Ma "Kibaran event" in Central Africa: prominent emplacement of bimodal magmatism under extensional regime. Precambrian Res 180:63–84CrossRefGoogle Scholar
  80. Tait J, Delpomdor F, Préat A, Tack L, Straathof G, Kanda Nkula V (2011) Neoproterozoic sequences of the West Congo and Lindi/Ubangi Supergroups in the Congo Craton, Central Africa. In: Arnaud E, Halverson GP, Shields-Zhou G (eds) The geological record of Neoproterozoic Glaciation, vol 36. Geol Soc, London, Mem, pp 185–194Google Scholar
  81. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02-An improved Earth gravity field model from GRACE. J Geod 79:467–478CrossRefGoogle Scholar
  82. Verbeek T (1970) Géologie et lithologie du Lindien (Précambrien Supérieur du nord de la République Démocratique du Congo). Ann. Mus. Roy. Afr. Cent., Tervuren (Belgique), série in-8, Sci Géol, 66, 311 ppGoogle Scholar
  83. Vicat J-P, Pouclet A (1995) Nature du magmatisme lié à une extension pré-panafricaine: les dolérites des bassins de Comba et de Sembé-Ouesso (Congo). Bulletin de la Société Géologique de France 166(4):355–364Google Scholar
  84. Vicat J-P, Vellutini P-J (1987) Sur la nature et la signification des dolérites du bassin précambrien de Sèmbe-Ouesso (République du Congo). Precambrian Res 37:57–69CrossRefGoogle Scholar
  85. Vicat J-P, Gioan P, Albouy Y, Cornacchia M, Giorgi L, Blondin P (1989) Mise en évidence, sur la bordure ouest du craton du Congo, de fosses d’effondrement d’âge Protérozoique supérieur, masqués par les formations phanérozoïques de la cuvette du Zaïre. Comptes Rendus de l’Académie des Sciences, série II A 309:1207–1213Google Scholar
  86. Villeneuve M (1983) Les sillons tectoniques du Precambrien superieur dans l'Est du Zaire. Comparaisons avec les directions du rift est-africain. Bull Centres Rech Explor-Prod Elf-Aquitaine 7(1):163–174Google Scholar
  87. Waleffe A (1988) Etude photogéologique du synclinorium de l'Itombwe et des régions avoisinantes au Sud du 3è parallèle Sud (Kivu, Zaire). Bulletin de la Société belge de Géologie 97(2):211–221Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Étienne Kadima Kabongo
    • 1
  • Damien Delvaux
    • 2
  • Michel Everaerts
    • 2
  • Mwene Ntabwoba Stanislas Sebagenzi
    • 1
  • Francis Lucazeau
    • 3
  1. 1.Laboratoire de Géophysique et Géodynamique, Département de GéologieUniversité de LubumbashiLubumbashiDR Congo
  2. 2.Geodynamics and Mineral Resources, Royal Museum for Central AfricaTervurenBelgium
  3. 3.Dynamique des Fluides Géologiques, Institut de Physique du Globe de Paris/SorbonneParisFrance

Personalised recommendations