Skip to main content

Probable Fungal Colonization and Carbonate Diagenesis of Neoproterozoic Stromatolites from South Gabon, Western Congo Basin

  • Chapter
  • First Online:
Geology and Resource Potential of the Congo Basin

Part of the book series: Regional Geology Reviews ((RGR))

  • 1864 Accesses

Abstract

A petrographic and SEM study of fresh Neoproterozoic carbonate stromatolites from the old Mouila quarry in South Gabon reveals abundant micrometer-sized solution cavities infilled with 0.1–3.0 μm-thick filamentous microbe-like structures, rhombohedral dolomite and quadratic-shaped dolomite crystals that may originally have been oxalates. The filaments appear entangled within an amorphous, organic matrix reminiscent of microbial extracellular polysaccharides (EPS), to which a number of small (0.5 μm) spherical grains of dolomite are attached. A number of characteristic fungal features are evident, including per-mineralized (now dolomitic) sporangia attached to their sporangiophores, dichotomous hyphae, columella, sporangial wall ornamentation, probable spore masses, and ghost traces of fungal remains. In one instance a mineralized zygopsporangium with suspensors appears totally embedded in the matrix. Detailed observation of the solution cavities suggests three distinct stages of formation: (1) incipient fungal colonization, physical penetration of primary carbonate grains boundaries by penetrating fungal stolons, (2) EPS production, organic acid dissolution and neomineral formation on crystal boundaries, and (3) an advanced weathering stage where well-developed cavities form with flanking dolomite ‘collars’. Based on the observations that the cavities and fungi are stratigraphically confined to the same depths; there is no compaction, no grain interpenetration, or collapse of the former sulfate or microenterolithes (i.e., very rapid dolomitization); thin, delicate laminae in the stromatolites are well preserved; and oxygen isotope data which indicate penecontempraneous dolomite with no post-depositional meteoric fluid interaction, all imply that the weathering features occurred during, or immediately after, dolomite formation. Similar diagenetic morphostructures were reproduced in vitro through fungal interaction with the fine-grained dolomite of Terwagne Formation (Viséan, France) used as a substrate. The results strongly suggest that Precambrian fungi played a role in post-depositional alteration of stromatolites, and importantly, may provide early physical evidence for fungi in the rock record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexopoulos CJ, Mims CW (1979) Introductory mycology, 3rd edn. Wiley, New York

    Google Scholar 

  • Alvarez P, Maurin JC (1991) Evolution sédimentaire et tectonique du bassin protérozoïque supérieur de Comba (Congo): stratigraphie séquentielle du Supergroupe Ouest-Congolien et modèle d’amortissement sur décrochements dans le contexte de la tectonogenèse panafricaine. Precambrian Res 50:137–171

    Article  Google Scholar 

  • Amard B, Bertrand-Sarfati J (1997) Microfossils in 2000 Ma old cherty stromatolites of the Franceville Group, Gabon. Precambrian Res 81:197–221

    Article  Google Scholar 

  • Bennett PC, Melcer ME, Siegel DI, Hassett JP (1988) The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C. Geochim Cosmochim Acta 52:1521–1530

    Article  Google Scholar 

  • Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geological time. In: McLaughin DJ, McLaughin EG, Lemke PA (eds) The Mycota VIIB systematic and evolution. Springer, Berlin, pp 229–245

    Chapter  Google Scholar 

  • Burford EP, Fomina M, Gadd GM (2003a) Fungal involvement in bioweathering and biotransformation of rocks and minerals. Miner Magaz 67:1127–1155

    Article  Google Scholar 

  • Burford EP, Kierans M, Gadd GM (2003b) Geomycology: fungi in mineral substrata. Mycologist 17:98–107

    Article  Google Scholar 

  • Butterfield NJ (2005) Probable proterozoic fungi. Paleobiology 31(1):165–182

    Article  Google Scholar 

  • Canfield D (2005) The early history of atmospheric oxygen: Hommage to Robert A Garrels. Annu Rev Earth Planet Sci 33:1–36

    Article  Google Scholar 

  • Cardon Z, Whitbeck JL (eds) (2007) The rhizosphere. an ecological perspective. Elsevier Academic Press, New York, 212 pp

    Google Scholar 

  • Cavagna S, Clari P, Martire L (1999) The role of bacteria in the formation of cold seep carbonates: geological evidence from Monferrato (Tertiary, NW Italy). Sediment Geol 126:253–270

    Article  Google Scholar 

  • Cavalier-Smith T (1987) The origin of fungi and pseudofungi. In: Rayner AM, Brasier CM, Moor D (eds) Evolutionary biology of the fungi. Cambridge University Press, Cambridge, pp 339–353

    Google Scholar 

  • Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc B: Biol Sci 361(1470):969–1006

    Article  Google Scholar 

  • Chen J, Blume HP, Beyer L (2000) Weathering of rocks induced by lichen colonization, a review. Catena 39(2):121–146

    Article  Google Scholar 

  • Clark DN (1980) The diagenesis of Zechstein carbonate sediments. In: Füchtbauer H, Peryt T (eds) The Zechstein Basin with emphasis on carbonate sequences. Stuttgart, E, Schweizerbart’sche Verlagsbuchandlung, Contribution to sedimentology, vol 9, pp 167–203

    Google Scholar 

  • Esteban M, Klappa CF (1983) Subaerial exposure environment. In: Scholle P, Bebout DG, Moore CH (eds) Carbonate depositional environments, vol 33, American Association Petroleum Geolologists Memoir., pp 2–54

    Google Scholar 

  • Feldmann M, McKenzie JA (1997) Messinian stromatolite-thrombolite associations, Santa Pola, SE Spain: an analogue for the Palaeozoic? Sedimentology 44:893–914

    Article  Google Scholar 

  • Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92

    Article  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 111(1):3–49

    Article  Google Scholar 

  • Gérard G (1958) Carte géologique de l’Afrique Equatoriale Française au 2 000 000 avec notice explicative. Brazza. Direction Mines et Géologie. Afrique Equatoriale Française, 198 pp, 4 feuilles

    Google Scholar 

  • Gerdes G, Krumbein W, Noffke N (2000) Evaporite microbial sediments. In: Riding R, Awramik S (eds) Microbial sediments. Springer, Berlin, pp 196–208

    Chapter  Google Scholar 

  • Golubic S, Gudrun R, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13(5):229–235

    Article  Google Scholar 

  • Grote G, Krumbein WE (1992) Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiol J 10:49–57

    Article  Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts and environmental dipsticks? Ann Rev Earth Planet Sci 27:313–358

    Article  Google Scholar 

  • Hardie LA (ed) (1977) Sedimentation on the modern carbonate tidal flats of Northwest Andros Island, Bahamas, vol 22. John Hopkins University Studies in Geology, Baltimore, 202 pp

    Google Scholar 

  • Hardie LA, Ginsburg RN (1977) Layering: the origin and environmental significance of lamination and thin bedding. In: Hardie LA (ed) Sedimentation on the modern carbonate tidal flats of Northwest Andros Island, Bahamas, vol 22. John Hopkins University Studies in Geology, Baltimore, pp 50–12

    Google Scholar 

  • Heckman DS, Geiser DM, Brooke RE, Rebecca L, Stauffer NL, Kardos S, Blair H (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293(5532):1129–1133

    Article  Google Scholar 

  • Hermann T, Podkovyrov V (2006) Fungal remains from the Late Riphean. Paleontolog J 40:207–214

    Article  Google Scholar 

  • Hoffland ET, Kuyper W, Wallander H, Plassard C, Gorbushina AA, Haselwandter K, Holmström S, Landeweert R, Lundström US, Rosling A, Sen R, Smits MM, van Hees PAW, van Breemen N (2004) The role of fungi in weathering. Front Ecol Environ 2(5):258–264

    Article  Google Scholar 

  • Jones B (2005) Dolomite crystal architecture: genetic implications for the origin of the tertiary Dolostones of the Cayman Islands. J Sediment Res 75:177–189

    Article  Google Scholar 

  • Kahle CF (1977) Origin of subaerial Holocene calcareous crusts: role of algae, fungi and sparmicritization. Sedimentology 24:413–435

    Article  Google Scholar 

  • Kendrick B (2000) The fifth kingdom, 3rd edn. Focus Publishing, R. Pullins Company, Newburyport, MA

    Google Scholar 

  • Kennedy M, Droser M, Mayer LM, Pevear D, Mrofka D (2006) Late precambrian oxygenation; inception of the clay mineral factory. Science 311(5766):1446–1449

    Article  Google Scholar 

  • Kolo K, Claeys P (2005) In vitro formation of Ca-oxalates and the mineral glushinskite by fungal interaction with carbonate substrates and seawater. Biogeosciences 2:277–293

    Article  Google Scholar 

  • Kolo K, Keppens E, Préat A, Claeys P (2007) Experimental observations on fungal diagenesis of carbonate substrates. J Geophys Res Biogeosci 112, GO1007

    Article  Google Scholar 

  • Konhauser K (2007) Introduction to geomicrobiology. Blackwell Publishing, Malden, MA, 425 pp

    Google Scholar 

  • Krings M, Taylor TN, Dotzler N (2013) Fossil evidence of the zygomycetous fungi. Persoonia 30:1–10

    Article  Google Scholar 

  • Krumbein WE (1972) Rôle des microorganismes dans la genèse, la diagenèse et la dégradation des roches en place. Revue Ecol Biol Sol 9:283–319

    Google Scholar 

  • Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev Desert (Israel): an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50:25–38

    Article  Google Scholar 

  • Logan BW, Rezak R, Ginsburg RN (1964) Classification and environmental significance of algal stromatolites. J Geol 72:68–83

    Article  Google Scholar 

  • Mamet B, Préat A (2005) Sédimentologie de la série viséenne d’Avesnes-sur-Helpe (Avesnois, Nord de la France). Geol Belgica 8:91–107

    Google Scholar 

  • Moore-Landecker E (1991) Fundamentals of the fungi, 3rd edn. Prentice Hall, Englewood Cliffs, New Jersey, USA

    Google Scholar 

  • Préat A, Kolo K, Mamet B, Gorbushina AA, Gillan DC (2003) Fossil and subrecent fungal communities in three calcrete series from the Devonian of the Canadian Rocky Mountains, Carboniferous of Northern France and Cretaceous of Central Italy. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilm. A natural history of life on Earth. Kluwer Acad. Publ., pp 291–306

    Google Scholar 

  • Préat A, Kolo K, Delpomdor F (2010) A peritidal evaporate environment in the Neoproterozoic of South Gabon (Schisto-Calcaire Subgroup). Precambrian Res 177:253–265

    Article  Google Scholar 

  • Préat A, Prian JP, Thiéblemont D, Obame RM, Delpomdor F (2011a) Stable isotopes of oxygen and carbon compositions in the Neoproterozoic of South Gabon (Schisto-Calcaire Subgroup, Nyanga Basin): are cap carbonates and lithoherms recording a particular destabilization event after the Marinoan glaciation? J Afr Earth Sci 60:273–287

    Article  Google Scholar 

  • Préat A, Delpomdor F, Kolo K, Gillan D, Prian JP (2011b) Stromatolites and cyanobacterial mats in peritidal evaporitive environments in the Neoproterozoic of Bas-Congo (Democratic Republic of Congo) and South Gabon. In: Seckbach J, Tewari VC (eds) Stromatolites: interaction of microbes with sediments, Series: cellular origin, life in extreme habitats and astrobiology. Springer, Heidelberg, pp 43–63. doi:10.1007/978-94-007-0397

  • Purser BH (ed) (1973) The Persian Gulf. Holocene carbonate sedimentation and diagenesis in a shallow epicontinental Sea. Springer, Berlin, Heidelberg, New York, 471 pp

    Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289(5486):1920–1921

    Article  Google Scholar 

  • Richter DD, Oh NH, Fimmen R, Jason J (2007) The rhizosphere and soil formation. In: Cardon Z, Whitbeck JL (eds) The rhizosphere. An ecological perspective. Elsevier Academic Press, pp 179–200

    Google Scholar 

  • Saylor BZ, Kaufman AJ, Grotzinger JP, Urban F (1998) A composite reference section for terminal Proterozoic strata of Southern Namibia. J Sedim Res 68(6):1223–1235

    Article  Google Scholar 

  • Sellwood BW (1986) Shallow-marine carbonate environments. In: Reading HG (ed) Sedimentary environments and facies. Blackwell Science Publ, Oxford, pp 283–234

    Google Scholar 

  • Sterflinger K (2000) Fungi as geologic agents. Geomicrobiol J 17:97–124

    Article  Google Scholar 

  • Sterfinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J 14:219–230

    Article  Google Scholar 

  • Stubblefield SP, Taylor TN (1988) Recent advances in palaeomycology. New Phytol 108:3–25

    Article  Google Scholar 

  • Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT (2005) Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia 97:269–285

    Article  Google Scholar 

  • Thiéblemont D, Castaing C, Billa M, Bouton P, Préat A (2009) Notice explicative de la Carte géologique et des Ressources minérales de la République gabonaise à 1/1 000 000, Editions DGM, Ministère des Mines et du Pétrole, des Hydrocarbures, Libreville, 381 pp

    Google Scholar 

  • Vahrenkamp VC, Swart PK (1994) Late Cenozoic sea-water generated dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites, In: Purser BH, Tucker ME, Zenger DH (eds) Dolomites, a volume in honour of Dolomie, vol 21, Special Publication. International Association of Sedimentologists, pp 133–153

    Google Scholar 

  • Verrecchia EP (2000) Fungi and Sediments. In: Riding R, Awramik S (eds) Microbial sediments. Springer, Berlin, pp 68–75

    Chapter  Google Scholar 

  • Verrecchia EP, Loisy C, Braissant O, Gorbushina AA (2003) The role of fungal biofilm and networks in the terrestrial calcium carbonate cycle. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilm. A natural history of life on Earth. Kluwer Ac. Publ., pp 363–369

    Google Scholar 

  • Veizer J, Plumb KA, Clayton RN, Hinton RW, Grotzinger JP (1992) Geochemistry of Precambrian carbonates: V. Late Paleoproterozoic seawater. Geochim Cosmochim Acta 56:2487–2501

    Article  Google Scholar 

  • Vogel K, Gektidis M, Golubic S, Kiene WE, Radtke G (2000) Experimental studies on microbial bioerosion at Lee Stocking Island, Bahamas and One Tree Island, Great Barrier Reef, Australia: implications for paleoecological reconstructions. Lethaia 33:190–204

    Article  Google Scholar 

  • Walter MR (ed) (1976) Stromatolites. Developments in sedimentology, vol 20. Elsevier, Amsterdam, Oxford, New York, 790 pp

    Google Scholar 

  • Welch SA, Barker WW, Banfield JF (1999) Microbial extracellular polymers and plagioclase dissolution. Geochim Cosmochim Acta 57:2939–2948

    Google Scholar 

  • Westall F (2005) Early life on Earth: the ancient fossil record, astrobiology: future perspectives. pp 287–316

    Google Scholar 

  • Wright VP (1986) The role of fungal biomineralization in the formation of Early Carboniferous soil fabrics. Sedimentology 33:831–838

    Article  Google Scholar 

  • Yuan X, Xiao S, Taylor TN (2006) Lichen-like symbiosis 600 million years ago. Science 308(5724):1017–1020

    Article  Google Scholar 

Download references

Acknowledgements

Kamal Kolo would like to thank Prof. Philippe Claeys, Department of Geology/Vrije Universiteit Brussels for supporting the experimental work in this study. We also thank the Department of Metallurgy/Vrije Universiteit Brussels for kindly giving access to their SEM and FE-SEM laboratories. The fieldwork was done under the terms of the SYSMIN program (Eighth Fonds Européen de Développement, BRGM-CGS-SANDER-MRAC). KOK would like to thank the Natural Sciences and Engineering Research Council of Canada for continued support. The authors thank Dr Yannick Callec, BRGM (Bureau Recherches Géologiques et Minières, Orléans, France) for guiding Alain Préat on the field in the Niari area during dry season (September 2012). We thank Prof. David Gillan for a comprehensive review which helped improve the MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal Kolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kolo, K., Konhauser, K., Prian, JP., Préat, A. (2015). Probable Fungal Colonization and Carbonate Diagenesis of Neoproterozoic Stromatolites from South Gabon, Western Congo Basin. In: de Wit, M., Guillocheau, F., de Wit, M. (eds) Geology and Resource Potential of the Congo Basin. Regional Geology Reviews. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29482-2_5

Download citation

Publish with us

Policies and ethics