New Regional Correlations Between the Congo, Paraná and Cape-Karoo Basins of Southwest Gondwana

  • Bastien Linol
  • Maarten J. de Wit
  • Edison J. Milani
  • Francois Guillocheau
  • Claiton Scherer
Chapter
Part of the Regional Geology Reviews book series (RGR)

Abstract

Pioneering stratigraphic correlations by J. Keidel and A. du Toit, in the first half of the twentieth century, first highlighted significant similarities between the age-rock sequences in southern Africa and eastern South America, supporting A. Wegener’s concept of a united Gondwana supercontinent. Based on subsequent field investigations and modern sedimentary basin analysis of the Congo Basin of central Africa and the Paraná Basin of southeastern Brazil, we revisit these early correlations and derive new paleogeographic reconstructions of the interior of southwest Gondwana. Following late Neoproterozoic-Early Cambrian amalgamation of Gondwana, earliest Paleozoic continental red-bed sediments were deposited regionally southward across the peneplained Central African and Kalahari Shields. Thereafter, Ordovician-Devonian subsidence along a vast shallow marine platform bordering the southwestern margin of Gondwana linked the Paraná Basin with the Cape-Karoo Basin of South Africa. Equivalent sequences are absent in the Congo Basin. In contrast, succeeding Carboniferous-Permian and Triassic successions are similar in all the Congo, Paraná and Cape-Karoo Basins, including thick transgressive glacial and deglaciation sequences overlain by progressively terrestrial and arid sediments, which suggest a single Central West Gondwana Basin (CWGB) complex. This late Paleozoic-early Mesozoic cycle of subsidence of the CWGB can possibly be linked to long wavelength flexure of Gondwana continental lithosphere related to the Mauritanian-Variscan and Cape-de la Ventana orogens along the northwestern and southern margins of the supercontinent, around ca. 300 Ma and 250 Ma, respectively. Following Jurassic-Cretaceous hot and arid sedimentation across southwest Gondwana culminated in widespread deposition of northerly-derived aeolian dunes, episodically interrupted by successive eruption of Large Igneous Provinces during the initial phases of Gondwana break-up (ca. 183 Ma and 132 Ma). This shared sedimentation and climatic history of the Congo, Paraná and Cape-Karoo Basins was then disrupted by the Early Cretaceous opening of the South Atlantic Ocean and the Kalahari epeirogeny, after which the Congo Basin survived and recorded intermittent phases of lacustrine and fluvial deposition.

Keywords

Black Shale Detrital Zircon Congo Basin Large Igneous Province Southwestern Margin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We acknowledge funding through the Inkaba yeAfrica and !Khure Africa programs. We also acknowledge Petrobras for providing support in Brazil. B. Linol particularly thanks Renata da Silva Schmitt, convener of the Gondwana14 conference in Buzios and leader of the Gondwana Map Project for welcoming him in the new Gondwana mapping center at the Universidade Federal do Rio de Janeiro. This is AEON contribution number 131 and Inkaba yeAfrica contribution number 101.

References

  1. Alvarez P, Maurin JC, Vicat J-P (1995) La Formation de l’Inkisi (Supergroupe Ouest-congolien) en Afrique centrale (Congo et Bas-Zaire): un delta d'âge Paléozoique comblant un bassin en extension. J Afr Earth Sci 20(2):119–131CrossRefGoogle Scholar
  2. Assine ML, Piranha JM, Carneiro CDR (2004) Os paleodesertos Pirambóia e Botucatu. In: Mantesso-Neto V, Bartorelli A, Carneiro CDR, Brito-Neves BB (eds) Geologia do Continente Sul-Americano: evolução da obra de Fernando Flávio Marques de Almeida. Beca Prod Cult Ltda, São Paulo, pp 77–92Google Scholar
  3. Blanco G, Germs GJB, Rajesh HM, Chemale F Jr, Dussin IA Jr, Justino D (2011) Provenance and paleogeography of the Nama Group (Ediacaran to early Palaeozoic, Namibia): Petrography, geochemistry and U-Pb detrital zircon geochronology. Precambrian Res 187(1–2):15–32CrossRefGoogle Scholar
  4. Bordy EM, Segwabe T, Makuke B (2010) Sedimentology of the upper triassic-lower jurassic (?) mosolotsane formation (Karoo Supergroup), Kalahari Karoo Basin, Botswana. J Afr Earth Sci 58(1):127–140CrossRefGoogle Scholar
  5. Boutakoff N (1948) Les formations glaciaires et post-glaciaires fossilifères, d’âge permo-carbonifère (Karoo inférieur) de la region de Walikale (Kivu, Congo belge). Mémoire de l’Institut géologique. Université de Louvain, IX (II), 214 ppGoogle Scholar
  6. Blackburn TJ, Olsen PE, Bowring SA, McLean NM, Kent DV, Puffer J, McHone G, Rasbury ET, Et-Touhami M (2013) Zircon U-Pb geochronology links the end-triassic extinction with the central Atlantic magmatic province. Science. doi:  10.1126/science.1234204
  7. Cahen L (1954) Géologie du Congo Belge. Vaillant-Carmanne, Liège, p 577 pGoogle Scholar
  8. Cahen L (1981) Précisions sur la stratigraphie et les corrélations du Goupe de la Haute-Lueki et des formations comparables (Triasique a Liasique? d’Afrique Centrale). Rapport annuel du Musée Royal d’Afrique centrale, Tervuren (Belgique), Départment de Géologie et de Minéralogie, pp 81–96Google Scholar
  9. Cahen L (1983a) Brèves précisions sur l’âge des groupes crétaciques post-Wealdien (Loia, Bokungu, Kwango) du Bassin interieur du Congo (Republique du Zaïre). Rapport annuel du Musée Royal de l’Afrique centrale, Tervuren (Belgique), Département de Géologie et de Minéralogie, pp 61–72Google Scholar
  10. Cahen L (1983b) Le Groupe de Stanleyville (Jurassic superieur et Wealdien de l’intérieur de la République du Zaïre): Révision des connaissances. Rapport annuel du Musée Royal de l’Afrique centrale, Tervuren (Belgique), Département de Géologie et de Minéralogie, pp 73–91Google Scholar
  11. Cahen L, Lepersonne J (1978) Synthèse des connaissances relatives au Groupe (anciennement Série) de la Lukuga (Permien du Zaïre). Annales du Musée Royal du Congo belge, Tervuren (Belgique), Série in-8, Sciences géologiques, 82, pp 115–152Google Scholar
  12. Catuneanu O, Wopfner H, Eriksson PG, Cairncross B, Rubidge BS, Smith RMH, Hancox PJ (2005) The Karoo basins of south-central Africa. J Afr Earth Sci 43(1–3):211–253CrossRefGoogle Scholar
  13. Chorowicz J (2005) The East African rift system. J Afr Earth Sci 43(1–3):379–410CrossRefGoogle Scholar
  14. Cloetingh S, Lankreijer A, de Wit MJ, Martinez I (1992) Subsidence history analysis and forward modelling of the Cape and Karoo Supergroups. In: de Wit MJ, Ransome I (eds) Inversion tectonics of the Cape Fold Belt Karoo and Cretaceous basins of southern Africa. Rotterdam, A.A. Balkema, pp 239–248Google Scholar
  15. Cocks LRM, Torsvik TH (2006) European geography in a global context from the Vendian to the end of the Palaeozoic. In: Gee DG, Stephenson RA (eds) European lithosphere dynamics. Geological Society of London, pp 83–95Google Scholar
  16. Cole DI (1992) Evolution and development of the Karoo Basin. In: de Wit MJ, Ransome I (eds) Inversion tectonics of the Cape Fold Belt Karoo and Cretaceous basins of southern Africa. A.A. Balkema, Rotterdam, pp 87–99Google Scholar
  17. Cordani UG, Pimentel MM, de Araújo CEG, Basei MAS, Fuck RA, Girardi VAV (2013) Was there an Ediacaran Clymene OIcean in central South America? Am J Sci 313:517–539CrossRefGoogle Scholar
  18. Craddock J, Thomas R (2011) Detrital zircon provenance ages of the “Dwyka tillite” in South Africa and the Falkland Islands. Abstract, GeoSynthesis, Cape Town, 30 Aug–1 SeptGoogle Scholar
  19. Craddock J (2011) Provenance of late Paleozoic tillites across Gondwana. Abstract, Gondwana14, Buzios, 25–30 SeptGoogle Scholar
  20. Dabo M, Gueye M, Ngom PM, Diagne M (2008) Orogen-parallel tectonic transport: transpression and strain partitioning in the Mauritanides of NE Senegal. In: Ennih N, Liégeois J-P (eds) The boundaries of the West African Craton, Special Publications, vol 297. Geological Society, London, pp 483–497Google Scholar
  21. Daly MC, Lawrence SR, Diemu-Tshiband K, Matouana B (1992) Tectonic evolution of the Cuvette Centrale, Zaire. J Geol Soc 149(4):539–546CrossRefGoogle Scholar
  22. Deckart K, Féraud G, Marques LS, Bertrand H (1998) New time constraints on dyke swarms related to the Paraná-Etendeka magmatic province, and subsequent South Atlantic opening, southeastern Brazil. J Volcanol Geotherm Res 80:67–83CrossRefGoogle Scholar
  23. Decker JE, Niedermann S, de Wit MJ (2013) Climatically influenced denudation rates of the southern African plateau: clues to solving a geomorphic paradox. Geomorphology 190:48–60CrossRefGoogle Scholar
  24. De Paula e Silva F, Kiang CH, Caetano-Chang MR (2009) Sedimentation of the Cretaceous Bauru Group in São Paulo, Paraná Basin, Brazil. J South Am Earth Sci 28(1):25–39CrossRefGoogle Scholar
  25. De Wit MJ, Stankiewicz J, Reeves C (2008) Restoring Pan-African-Brasiliano connections: more Gondwana control, less Trans-Atlantic corruption. In: Pankurst RJ, Trouw RAJ, Brito Neves BB, de Wit MJ (eds) West Gondwana: Pre-Cenozoic correlations across the South Atlantic Region, Special Publications, vol 294. Geological Society of London, pp 399–412Google Scholar
  26. De Wit MJ (2007) The Kalahari Epeirogeny and climate change: differentiating cause and effect from core to space. South Afr J Geol 110(2–3):367–392CrossRefGoogle Scholar
  27. De Wit MJ, Ransome IGD (1992) Inversion tectonics of the Cape Fold Belt, Karoo and Cretaceous Basins of Southern Africa. A.A. Balkema, Rotterdam, p 269 pGoogle Scholar
  28. De Wit MJ, Jeffery M, Berg H, Nicolayson LO (1988) Geological Map of sectors of Gondwana reconstructed to their position ~150 Ma (with explanatory notes), scale 1: 1.000.000. American Association of Petroleum Geologist, TulsaGoogle Scholar
  29. Dingle RV, Siesser WG, Newton AR (1983) Mesozoic and tertiary geology of southern Africa. A.A. Balkema, Rotterdam, p 375pGoogle Scholar
  30. Domeier M, Van der Voo R, Torsvik TH (2012) Paleomagnetism and Pangea: the road to reconciliation. Tectonophysics 514–517:14–43CrossRefGoogle Scholar
  31. Du Toit AL (1954) The geology of South Africa, 3rd edn. Oliver and Boyd, Edinburgh, p 611 pGoogle Scholar
  32. Du Toit AL (1937) Our wandering continents: an hypothesis of continental drifting. Oliver and Boyd, Edinburgh, p 366 pGoogle Scholar
  33. Du Toit AL (1927) A geological comparison of South America with South Africa. Publication of the Carnegie Institution of Washington. No. 381. Washington DC, Carnegie Institution of WashingtonGoogle Scholar
  34. Du Toit AL (1926) The geology of South Africa. Olivier and Boyd, EdinburghGoogle Scholar
  35. Duncan RA, Hooper PR, Rehacek J, Marsh JS, Duncan AR (1997) The timing and duration of the Karoo igneous event, southern Gondwana. J Geophys Res 102:18127–18138CrossRefGoogle Scholar
  36. Encarnación J, Fleming TH, Elliot DH, Eales HV (1996) Synchronous emplacement of Ferrar and Karoo dolerites and the early break up of Gondwana. Geology 24(6):535–538CrossRefGoogle Scholar
  37. Fairhead JD (1988) Mesozoic plate tectonic reconstructions of the central South Atlantic Ocean: the role of the West and Central African rift system. Tectonophysics 155(1–4):181–191CrossRefGoogle Scholar
  38. Fildani A, Weislogel a, Drinkwater NJ, McHargue T, Tankard A, Wooden J, Hodgson D, Flint S (2009) U-Pb zircon ages from the southwestern Karoo Basin, South Africa: implications for the Permian-Triassic boundary. Geology 37(8):719–722CrossRefGoogle Scholar
  39. Forster A, Schouten S, Baas M, Sinninghe Damsté JS (2007) Mid-Cretaceous (Albian-Santonian) sea surface temperature record of the tropical Atlantic Ocean. Geology 35(10):919–922CrossRefGoogle Scholar
  40. Frank TD, Birgenheier LP, Montañez IP, Fielding CR, Rygel MC (2008) Late Paleozoic climate dynamics revealed by comparison of ice-proximal stratigraphic and ice distal isotopic records. In: Fielding CR, Frank TD, Isbell JL (eds) Resolving the late Paleozoic ice age in time and space. Geological Society of America, Special Paper, 441:331–342Google Scholar
  41. Frimmel H, Tack L, Basei M, Nutman A, Boven A (2006) Provenance and chemostratigraphy of the Neoproterozoic West Congolian Group in the Democratic Republic of Congo. J Afr Earth Sci 46(3):221–239CrossRefGoogle Scholar
  42. Ganerød M, Torsvik TH, Van Hinsbergen DJJ, Gaina C, Corfu F, Werner S, Owen- Smith TM, Ashwal LD, Webb SJ, Hendriks BWH (2011) Palaeoposition of the Seychelles microcontinent in relation to the deccan traps and the Plume generation zone in late cretaceous-early palaeogene time. In: Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds) The formation and evolution of Africa: a synopsis of 3.8 Ga of Earth history. Geological Society of London, Special Publications, 357:229–252Google Scholar
  43. Germs GJB (1995) The Neoproterozoic of southwestern Africa, with emphasis on platform stratigraphy and paleontology. Precambrian Res 73:137–151CrossRefGoogle Scholar
  44. Gibson SA, Thompson RN, Day JA (2006) Timescales and mechanisms of plume-lithosphere interactions: 40Ar/39Ar geochronology and geochemistry of alkaline igneous rocks from the Paraná-Etendeka large igneous province. Earth Planet Sci Lett 251:1–17CrossRefGoogle Scholar
  45. Gobbo-Rodrigues SR, Coimbra JC, Petri SRJB (2003) Kwango Series (Congo), Bauru Group (Brazil) and Neuquen Basin (Argentina) ages, based on ostracods and vertebrates. XVIII Congresso Brasileiro de Paleontologia, Brasilia, Brazil, pp 152–153Google Scholar
  46. Gohl K, Uenzelmann-Neben G, Grobys N (2011) Growth and dispersal of a Southeast African large igneous province. South Afr J Geol 114(3–4):379–386CrossRefGoogle Scholar
  47. Grotzinger JP, Miller RM (2008) Nama Group. In: Miller RM (ed) The geology of Namibia. Windhoek, Geological Survey of Namibia, pp 229–272Google Scholar
  48. Heine C, Zoethout J, Müller RD (2013) Kinematics of the South Atlantic rift. Solid Earth 4:215–253CrossRefGoogle Scholar
  49. Hoffman PF (1999) The break-up of Rodinia, birth of Gondwana, true polar wander and the snowball Earth. J Afr Earth Sci 28(1):17–33CrossRefGoogle Scholar
  50. Hofman C, Courtillot V, Féraud G, Rochette P, Yirgu G, Ketefo E, Pik R (1997) Timing of the Ethiopian flood basalt event and implication for plume birth and global change. Nature 389:838–841CrossRefGoogle Scholar
  51. Iannuzzi R, Boardman DR (2007) Problems in western Gondwana Geology – 1st Workshop – South America-Africa correlations: du Toit revisited. Gramado-RS-Brazil, 27–29 Aug, extended abstracts, 197 pGoogle Scholar
  52. Jelsma HA, Barnett W, Richards S, Lister G (2009) Tectonic setting of kimberlites. Lithos 112S:155–165CrossRefGoogle Scholar
  53. Jelsma HA, Perrit SH, Amstrong R, Ferreira HF (2011) Shrimp U-Pb zircon geochronology of basement rocks of the Angolan Shield, western Angola. Abstract, 23rd CAG, Johannesburg, 8–14 JanGoogle Scholar
  54. Jerram D, Mountney N, Holzfo F, Stollhofen H (1999) Internal stratigraphic relationships in the Etendeka Group in the Huab Basin, NW Namibia: understanding the onset of flood volcanism. J Geodyn 28:393–418CrossRefGoogle Scholar
  55. Johnson MR, Van Vuuren CJ, Visser JNJ, Cole DI, de V. Wickens H, Christie ADM, D.L. R, Brandl G (2006) Sedimentary rocks of the Karoo supergroup. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Pretoria, South Africa, Council for Geoscience, pp 461–499Google Scholar
  56. Jokat W, Boebel T, König M, Meyer U (2003) Timing and geometry of early Gondwana breakup. J Geophys Res Solid Earth 108(B9)Google Scholar
  57. Jones DL, Duncan RA, Briden JC, Randall DE, Macniocaill C (2001) Age of the Batoka basalts, northern Zimbabwe, and the duration of Karoo large igneous province magmatism. Geochem Geophys Geosyst 2:14 pCrossRefGoogle Scholar
  58. Jourdan F, Féraud G, Bertrand H, Watkeys M, Renne PR (2007) Distinct brief major events in the Karoo large igneous province clarified by new 40Ar/39Ar ages on the Lesotho basalts. Lithos 98(1–4):195–209CrossRefGoogle Scholar
  59. Kay SM, Ramos VA, Mpodozis C, Sruoga P (1989) Late Paleozoic to Jurassic silicic magmatism at the Gondwana margin: analogy to the Middle proterozoic in North America? Geology 17:324–328CrossRefGoogle Scholar
  60. Keidel J (1916) La geología de las sierras de la Província de Buenos Aires y sus relaciones con las montañas de Sud Africa y los Andes. Anales del Ministerio de Agricultura de la Nación, Sección Geología, Mineralogía y Minería, Buenos Aires 3:1–78Google Scholar
  61. Kirstein LA, Kelley S, Hawkesworth C, Turner S, Mantovani M, Wijbrans J (2001) Protracted felsic magmatic activity associated with the opening of the South Atlantic. J Geol Soc London 158:583–592CrossRefGoogle Scholar
  62. Kleiman LE, Japas MS (2009) The Choiyoi volcanic province at 34°S–36°S (San Rafael, Mendoza, Argentina): implications for the late palaeozoic evolution of the southwestern margin of Gondwana. Tectonophysics 473:283–299CrossRefGoogle Scholar
  63. Kroner U, Romer RL (2013) Two plates – many subduction zones: the Variscan orogeny reconsidered. Gondwana Res 24:298–329CrossRefGoogle Scholar
  64. Lefort JP (1989) Basement correlation across the North Atlantic. Springer, Berlin, p 148 pCrossRefGoogle Scholar
  65. Lepersonne (1974) Carte géologique du Zaïre au 1: 2.000.000 et notice explicative. Kinshasa, République du Zaïre: Direction de la Géologie/Musée Royal de l’Afrique centrale, Tervuren (Belgique)Google Scholar
  66. Linol B (2013) Sedimentology and sequence stratigraphy of the Congo and Kalahari Basins of south-central Africa and their evolution during the formation and break-up of West Gondwana. PhD thesis, Nelson Mandela Metropolitan University, 375 pGoogle Scholar
  67. López-Gamundí O (2006) Permian plate margin volcanism and tuffs in adjacent basins of west Gondwana: Age constraints and common characteristics. J South Am Earth Sci 22(3–4):227–238CrossRefGoogle Scholar
  68. Maurin J-C, Guiraud R (1993) Basement control in the development of the early cretaceous West and Central African rift system. Tectonophysics 228(1–2):81–95CrossRefGoogle Scholar
  69. Marshall JEA (1994) The Falkland islands: a key element in Gondwana paleogeography. Tectonics 13:499–514CrossRefGoogle Scholar
  70. Martin H (1981) The late Palaeozoic Gondwana glaciation. Geologische Rundschau 70(2):480–496CrossRefGoogle Scholar
  71. Marzoli A, Renne PR, Piccirillo EM, Ernesto M, Bellieni G, Min AD (1999) Extensive 200-million-year-old continental flood Basalts of the Central Atlantic Magmatic province. Science 284:616–618CrossRefGoogle Scholar
  72. Master S, Rainaud C, Armstrong R, Phillips D, Robb L (2005) Provenance ages of the Neoproterozoic Katanga Supergroup (Central African Copperbelt), with implications for basin evolution. J Afr Earth Sci 42(1–5):41–60CrossRefGoogle Scholar
  73. Milani EJ, Gonçalves de Melo JH, de Souza PA, Fernandes LA, França AB (2007) Bacia do Paraná. Boletim de geociências da petrobras 15(2):265–287Google Scholar
  74. Milani EJ, de Wit MJ (2008) Correlations between the classic Paraná and Cape Karoo sequences of South America and southern Africa and their basin infills flanking the Gondwanides: du Toit revisited. In: Pankurst RJ, Trouw RAJ, Brito Neves BB, de Wit MJ (eds) West Gondwana: Pre-Cenozoic correlations across the South Atlantic region. Geological Society of London, Special Publications, 294, pp 319–342Google Scholar
  75. Milani EJ (1997) Evolução tectono-estratigráfica da Bacia do Paraná e seu relacionamento com a geodinâmica fanerozóica do Gondwana sul-ocidental, in 2 volumes. Thesis, Universidade Federal do Rio Grande do Sul, Porto AlegreGoogle Scholar
  76. Miller R (2008) The geology of Namibia, in three volumes. Geological Survey, Windhoek, NamibiaGoogle Scholar
  77. Mizusaki AMP, Melo JHG, Vignol-Lelarge ML, Steemans P (2002) Vila Maria Formation (Silurian, Paraná Basin, Brazil): integrated radiometric and palynological age determinations. Geol Mag 139(4):453–463CrossRefGoogle Scholar
  78. Montañez IP, Poulsen CJ (2013) The late Paleozoic ice age: an evolving paradigm. Annu Rev Earth Planet Sci 41:629–656CrossRefGoogle Scholar
  79. Moore GT, Hayashida DN, Ross CA, Jacobson SR (1992) Paleoclimate of the Kimmeridgian/Tithonian (Late Jurassic) world: I. Results using a general circulation model. Palaeogeogr Palaeoclimatol Palaeoecol 93(1–2):113–150CrossRefGoogle Scholar
  80. Morag N, Avigad D, Gerdes A, Belousova E, Harlavan Y (2011) Detrital zircon Hf isotopic composition indicates long-distance transport of North Gondwana Cambrian-Ordovician sandstones. Geology 39(10):955–958CrossRefGoogle Scholar
  81. Moulin M, Aslanian D, Unternehr P (2010) A new starting point for the South and Equatorial Atlantic Ocean. Earth-Sci Rev 98(1–2):1–37CrossRefGoogle Scholar
  82. Mounguengui MM, Lang J, Guiraud M (2008) Sedimentary dynamics and extensional structuring related to early Cretaceous rifting of Neocomian and Barremian deposits of the interior basin of Gabon. J Afr Earth Sci 51:239–256CrossRefGoogle Scholar
  83. Newton AR, Shone RW, Booth PWK (2006) The cape fold belt. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Pretoria, South Africa, Council for Geoscience, pp 521–530Google Scholar
  84. Oreskes N (2001) Plate tectonics: an insider’s history of the modern theory of the Earth. Westview Press, Colorado, p 424 pGoogle Scholar
  85. Pángaro F, Ramos VA (2012) Paleozoic crustal blocks of onshore and offshore central Argentina: New pieces of southwestern Gondwana collage and their role in the accretion of Patagonia and the evolution of Mesozoic south Atlantic sedimentary basins. Mar Pet Geol 37:162–183CrossRefGoogle Scholar
  86. Pankurst RJ, Vaughan APM (2009) The tectonic context of the Early Palaeozoic southern margin of Gondwana. In: Bassett MG (ed) Early Palaeozoic Peri-Gondwana terranes: new insights from tectonics and biogeography. London, Geological Society, Special Publications, 325, pp 171–176Google Scholar
  87. Peate DW, Hawkesworth CJ, Mantovani MSM (1992) Chemical stratigraphy of the Paranà lavas (South America): classification of magma types and their spatial distribution. Bull Volcanol 55:119–139CrossRefGoogle Scholar
  88. Pedrosa-Soares AC, Alkmim FF, Tack L, Noce CM, Babinski M, Silva LC, Martins-Neto MA (2008) Similarities and differences between the Brazilian and African counterparts of the Neoproterozoic Araçuaí-West Congo orogen. Geol Soc Lond Spec Publ 294(1):153–172CrossRefGoogle Scholar
  89. Pik R, Marty B, Carignan J, Yirgu G, Ayalew T (2008) Timing of East African Rift development in southern Ethiopia: implication for mantle plume activity and evolution of topography. Geology 36:167–170CrossRefGoogle Scholar
  90. Poidevin JL (1985) Le Proterozoic supérieur de la Républic Centrafricaine. Annales du Musée Royal de l’Afrique centrale, Tervuren (Belgique), Serie in-8, Sciences Geologiques, 91, 75 pGoogle Scholar
  91. Pucéat E, Lecuyer C, Donnadieu Y, Naveau P, Cappetta H, Ramstein G, Hubert BT, Kriwet J (2007) Fish tooth δ18O revising Late Cretaceous meridional upper ocean water temperature gradients. Geology 35(2):107–110CrossRefGoogle Scholar
  92. Pucéat E, Lecuyer C, Sheppard SMF, Dromart G, Reboulet S, Grandjean P (2003) Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography 18(2), 1029, 12 pGoogle Scholar
  93. Ramos VA, Aleman A (2000) Tectonic evolution of the Andes. In: Cordani UG, Milani, EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America. Rio de Janeiro, Brazil: 31st international geological congress, pp 635–685Google Scholar
  94. Rapela CW, Fanning CM, Casquet C, Pankhurst R, Spalletti L, Poiré D, Baldo EG (2011) The Rio de la Plata craton and the adjoining Pan-African/brasiliano terranes: their origins and incorporation into south-west Gondwana. Gondwana Res 20:673–690CrossRefGoogle Scholar
  95. Reeves C (1972) Rifting in the Kalahari? Nature 237(5350):95–96CrossRefGoogle Scholar
  96. Reeves C (1999) Aeromagnetic and gravity features of Gondwana and their relation to continental break-up: more pieces, less puzzle. J Afr Earth Sci 28:263–277CrossRefGoogle Scholar
  97. Renne PR, Ernesto M, Pacca IG, Coe RS, Glen JM, Prévot M, Perrin M (1992) The age of Paraná flood volcanism, rifting of gondwanaland, and the Jurassic-Cretaceous boundary. Science 258(5084):975–979CrossRefGoogle Scholar
  98. Robert M (1946) Le Congo physique. Troisième edition. H. Vaillant-Carmanne, Liége, 449 ppGoogle Scholar
  99. Rocha-Campos AC, Basei MA, Nutman AP, Kleiman LE, Varela R, Llambias E, Canile FM, da Rosa ODCR (2011) 30million years of Permian volcanism recorded in the Choiyoi igneous province (W Argentina) and their source for younger ash fall deposits in the Paraná Basin: SHRIMP U-Pb zircon geochronology evidence. Gondwana Res 19(2):509–523CrossRefGoogle Scholar
  100. Santos RV, Souza P a, de Alvarenga CJS, Dantas EL, Pimentel MM, de Oliveira CG, de Araújo LM (2006) Shrimp U-Pb zircon dating and palynology of bentonitic layers from the Permian Irati Formation, Paraná Basin, Brazil. Gondwana Res 9(4):456–463CrossRefGoogle Scholar
  101. Scheffler K, Hoernes S, Schwark L (2003) Global changes during Carboniferous-Permian glaciation of Gondwana: linking polar and equatorial climate evolution by geochemical proxies. Geology 31(7):605–608CrossRefGoogle Scholar
  102. Scherer CMS, Goldberg K (2007) Palaeowind patterns during the latest Jurassic - earliest Cretaceous in Gondwana: Evidence from aeolian cross-strata of the Botucatu Formation, Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 250(1–4):89–100CrossRefGoogle Scholar
  103. Scherer CMS, Goldberg K (2010) Cyclic cross-bedding in the eolian dunes of the Sergi Formation (Upper Jurassic), Recôncavo Basin: inferences about the wind regime. Palaeogeogr Palaeoclimatol Palaeoecol 296(1–2):103–110CrossRefGoogle Scholar
  104. Schneider RL, Muhlmann H, Tommasi E, Medeiros RA, Daemon RF, Nogueira AA (1974) Revissao estratigrafica da Bacia do Paraná. Anais do XXVIII Congresso Brasileiro de Geologia. Sociedade Brasileira de Geologia. Porto Alegre 1:41–65Google Scholar
  105. Searle M (2013) Colliding continents: a geological exploration of the Himalaya, Karakoram, and Tibet. Oxford University Press, USA, 368 pGoogle Scholar
  106. Sellwood BW, Valdes PJ (2008) Jurassic climates. Proc Geol Assoc 119(1):5–17CrossRefGoogle Scholar
  107. Smith R (1984) The lithostratigraphy of the Karoo Supergroup in Botswana, vol 26. Geological Survey/Ministry of Mineral Resources and Water Affairs Republic of Botswana, Lobatse, 239p.Google Scholar
  108. Souza PA (2006) Late Carboniferous palynostratigraphy of the Itararé Subgroup, northeastern Paraná Basin, Brazil. Rev Palaeobot Palynol 138:9–29CrossRefGoogle Scholar
  109. Stollhofen H, Stanistreet IG, Bangert B, Grill H (2000) Tuffs, tectonism and glacially related sea-level changes, Carboniferous-Permian, southern Namibia. Palaeogeogr Palaeoclimatol Palaeoecol 161:127–150CrossRefGoogle Scholar
  110. Tait J, Delpomdor F, Preat A, Tack L, Straathof G, Nkula VK (2011) Neoproterozoic sequences of the West Congo and Lindi/Ubangi Supergroups in the Congo Craton, Central Africa. In: Arnaud E, Halverson GP, Shields-Zhou G (eds) The geological record of Neoproterozoic glaciations. Geological Society of London, Memoirs, 36, pp 185–194Google Scholar
  111. Tankard A, Welsink H, Aukes P, Newton R, Stettler E (2009) Tectonic evolution of the Cape and Karoo basins of South Africa. Mar Pet Geol 26(8):1379–1412CrossRefGoogle Scholar
  112. Taverne L (1975) Etude ostéologique de Leptolepis caheni, Teleosteen fossile du Jurassique superieur (Kimmeridgien) de Kisangani (ex-Stanleyville, Zaïre) précedemment décrit dans le genre Paraclupavus. Revue Zoologique Africaine 89:821–853Google Scholar
  113. Tinker J, de Wit M, Brown R (2008) Mesozoic exhumation of the southern Cape, South Africa, quantified using apatite fission track Thermochronology. Tectonophysics 455(1–4):77–93CrossRefGoogle Scholar
  114. Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B, Doubrovine PV, van Hinsbergen DJJ, Domeier M, Gaina C, Tohver E, Meert JG, McCausland PJA, Cocks LR (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth Sci Rev 114(3–4):325–368CrossRefGoogle Scholar
  115. Torsvik TH, Amundsen H, Hartz EH, Corfu F, Kusznir N, Gaina C, Doubrovine PV, Steinberger B, Ashwal LD, Jamtveit B (2013) A Precambrian microcontinent in the Indian Ocean. Nat Geosci 6:223–227CrossRefGoogle Scholar
  116. Tófalo OR, Pazos PJ (2010) Paleoclimatic implications (Late Cretaceous - Paleogene) from micromorphology of calcretes, palustrine limestones and silcretes, southern Paraná Basin, Uruguay. J South Am Earth Sci 29(3):665–675CrossRefGoogle Scholar
  117. Toteu SF, Fouateu RY, Penaye J, Tchakounte J, Mouangue ACS, Van Schmus WR, Deloule E, Stendal H (2006) U-Pb dating of plutonic rocks involved in the nappe tectonic in southern Cameroon: consequence for the Pan-African orogenic evolution of the central African fold belt. J Afr Earth Sci 44(4–5):479–493CrossRefGoogle Scholar
  118. Trouw RA, de Wit MJ (1999) Relation between the Gondwanide Orogen and contemporaneous intracratonic deformation. J Afr Earth Sci 28(1):203–213CrossRefGoogle Scholar
  119. Trumbull RB, Reid DL, de Beer C, van Acken D, Romer RL (2007) Magmatism and continental breakup at the west margin of southern Africa: a geochemical comparison of dolerite dikes from northwestern Namibia and the Western Cape. South Afr J Geol 110:477–502CrossRefGoogle Scholar
  120. Van Staal CR, Whalen JB, Valverde-Vaquero P, Zagorevski A, Rogers N (2009) Pre-Carboniferous, episodic accretion-related, orogenesis along the Laurentian margin of the northern Appalachians. Geol Soc Lond Spec Publ 327:271–316CrossRefGoogle Scholar
  121. Veizer J, Godderis Y, Francois LM (2000) Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408:698–701CrossRefGoogle Scholar
  122. Veevers JJ, Cole DI, Cohan EJ (1994) Southern Africa: Karoo Basin and Cape Fold Belt. In: Veevers JJ, and Powell CMcA (eds) Permian-Triassic Pangean Basins and fold belts along the Panthalassan margin of Gondwanaland. Geological Society of America, Colorado, Memoir, 184, pp 223–280Google Scholar
  123. Vesely FF, Assine ML (2006) Deglaciation sequences in the Permo-Carboniferous Itararé Group, Paraná Basin, southern Brazil. J South Am Earth Sci 22:156–168CrossRefGoogle Scholar
  124. Vesely FF (2007) Sistemas subaquosos alimentados por fluxos hiperpicnais glaciogenicos: modelo deposicional para arenitos do Grupo Itararé, Permocarbonífero da Bacia do Paraná. Boletim de Geociências da Petrobras 15(1):7–25Google Scholar
  125. Visser JNJ (1995) Post-glacial Permian stratigraphy and geography of southern and central Africa: boundary conditions for climatic modelling. Palaeogeogr Palaeoclimatol Palaeoecol 118(3–4):213–243CrossRefGoogle Scholar
  126. Walford HL, White NJ (2005) Constraining uplift and denudation of West African continental margin by inversion of stacking velocity data. J Geophys Res-Solid Earth 110, B04403CrossRefGoogle Scholar
  127. Wegener A (1912) Die Enstehung der Kontinente. Geologische Rundschau 3:276–292CrossRefGoogle Scholar
  128. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 29:686–693CrossRefGoogle Scholar
  129. Zalan PV, Wolff S, de J. Conceicao JC, Marques A, Astolfi MAM, Vieira IS, Appi VT, Zanotto OA (1990) Bacia do Paraná. In: De Raja Gabaglia GP, Milani EJ (eds) Origem e Evolucao de Bacias Sedimentares. Petrobras, Rio de Janeiro, Brazil, pp 135–168Google Scholar
  130. Zerfass H, Chemale F, Schultz CL, Lavina E (2004) Tectonics and sedimentation in southern South America during Triassic. Sediment Geol 166(3–4):265–292CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bastien Linol
    • 1
    • 2
  • Maarten J. de Wit
    • 1
  • Edison J. Milani
    • 3
  • Francois Guillocheau
    • 4
  • Claiton Scherer
    • 5
  1. 1.AEON-ESSRI (Africa Earth Observatory Network – Earth Stewardship Science Research Institute)Nelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
  2. 2.Geological Sciences, Nelson Mandela Metropolitan UniversityPort ElizabethSouth Africa
  3. 3.Petrobras Research CenterRio de JaneiroBrazil
  4. 4.Géociences-Rennes, UMR 6118 Université de Rennes 1 – CNRS, OSUR, Université de Rennes 1Rennes cedexFrance
  5. 5.Instituto de Geociências, Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations