Skip to main content

Molecular Biology of Chronic Myeloid Leukemia

  • Chapter
  • First Online:

Part of the book series: Principles and Practice ((PRINCIPLES))

Abstract

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder resulting from an acquired genetic aberration t(9;22)(q34;q11) (Philadelphia chromosome) in stem cells. As a result the BCR/ABL fusion gene is formed which encodes a specific mRNA, translated into BCR/ABL proteins with an abnormally high tyrosine kinase activity, playing a crucial role in leukemic transformation and neoplastic proliferation of hematopoietic stem cells. BCR/ABL protein activates a number of transcription factors and gene promoters; however, its expression does not explain all the biological mechanisms of the origin of CML and its progression. Trisomy of chromosome 8, 19, isochromosome 17, and an additional Ph chromosome are the most frequent additional chromosomal abnormalities detected in course of CML progression. Suppressor genes dysfunction may play a role in the progression of CML. There is a considerable heterogeneity of the molecular mechanism and the genes involved in the development and progression of CML.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abelson HT, Rabstein LS (1970) Lymphosarcoma: virus- induced thymic-independent disease in mice. Cancer Res 30:2213–2222

    PubMed  CAS  Google Scholar 

  • Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, Ruhl J, Howlader N, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Cronin K, Chen HS, Feuer EJ, Stinchcomb DG, Edwards BK (eds) (2010) SEER cancer statistics review, 1975–2007, National Cancer Institute. Bethesda. http://seer.cancer.gov/csr/1975_2007/, based on November 2009 SEER data submission, posted to the SEER web site

  • Apperley J (2007) Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 8:1018–1029

    Article  PubMed  CAS  Google Scholar 

  • Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A, Pattacini L, Goldman JM, Melo JV (2005) BCR-ABL expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 65:8912–8919

    Article  PubMed  CAS  Google Scholar 

  • Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ (1994) Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 83:2038–2044

    PubMed  CAS  Google Scholar 

  • Biernaux C, Loos M, Sels A, Huez G, Stryckmans P (1995) Detection of major BCR-ABL gene expression at a very low level in blood cells of some healthy individuals. Blood 86:3118–3122

    PubMed  CAS  Google Scholar 

  • Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92:3362–3367

    PubMed  CAS  Google Scholar 

  • Bumm T, Müller C, Al-Ali HK, Kron K, Shepherd P, Schmidt E, Leiblein S, Franke C, Hennig E, Friedrich T, Krahl R, Niederwieser D, Deininger MWN (2003) Emergence of clonal cytogenetic abnormalities in Ph– cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 101:1941–1949

    Article  PubMed  CAS  Google Scholar 

  • Cannistra SA (1990) Chronic myelogenous leukaemia as a model for a genetic basis of cancer. Hematol Oncol Clin North Am 48:337–353

    Google Scholar 

  • Carella AM, Frassoni F, Melo J, Sawyers C, Eaves C, Eaves A, Apperley J, Tura S, Hehlmann R, Reiffers J, Lerma E, Goldman J (1997) New insights in biology and current therapeutic options for patients with chronic myelogenous leukemia. Hematologica 82:478–495

    CAS  Google Scholar 

  • Chissoe SL, Bodenteich A, Wang YF, Wang YP, Burian SW, Dennis C, Crabtree J, Freeman A, Iyer K, Jian L, Ma Y, McLaury HJ, Pan HQ, Sharan O, Toth S, Wong Z, Zhang G, Heisterkamp N, Groffen J, Roe BA (1995) Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. Genomics 27:67–82

    Article  PubMed  CAS  Google Scholar 

  • Cilloni D, Panuzzo C, Messa F, Arruga F, Bracco E, Bernardoni R, Carturan S, Pautasso M, Messa E, Morotti A, Pradotto M, Iacobucci I, Kalenic T, Martinelli G, Saglio G (2008) Imatinib induced re-activation of FoxO3 transcription factor in CML is responsible for the induction of a quiescent status of CD34 leukaemic progenitor cells. Blood 112:1090

    Google Scholar 

  • Cogswell PC, Morgan R, Dunn M, Neubauer A, Nelson P, Poland-Johnston NK, Sandberg AA, Liu E (1989) Mutations of the Ras ptotooncogenes in chronic myelogenous leukemia: a high frequency of Ras mutations in bcr/abl rearrangement-negative chronic myelogenous leukemia. Blood 74:2629–2633

    PubMed  CAS  Google Scholar 

  • Cohen GB, Ren R, Baltimore D (1995) Modular binding domains in signal transduction proteins. Cell 80:237–248

    Article  PubMed  CAS  Google Scholar 

  • Cortez D, Stoica G, Pierce JH, Pendergast AM (1996) The BCR-ABL tyrosine kinase inhibits apoptosis by activating a Ras-dependent signaling pathway. Oncogene 13:2589–2594

    PubMed  CAS  Google Scholar 

  • Costello R, Lafage M, Toiron Y, Brunel V, Sainty D, Arnoulet C, Mozziconacci MJ, Bouabdallah R, Gastaut J, Maraninchi D, Gabert J (1995) Philadelphia chromosome-negative chronic myeloid leukaemia: a report of 14 new cases. Br J Haematol 90:346–352

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Pendergast AM (1995) Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev 9:2569–2582

    Article  PubMed  CAS  Google Scholar 

  • Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K, Goldman J, Zaccaria A, Berrebi A, Canaani E (1991) p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci U S A 88:6293–6297

    Article  PubMed  CAS  Google Scholar 

  • Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF (1987) Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 328:342–344

    Article  PubMed  CAS  Google Scholar 

  • Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99

    Article  PubMed  CAS  Google Scholar 

  • Kessel GAHM, van Agthoven AJ, de Groot PG, Hagemeijer A (1981) Characterization of a complex philadelphia translocation (1p−; 9q+; 22q−) by gene mapping. Human Genet 58:162–165

    Article  Google Scholar 

  • Konopka JB, Witte ON (1985) Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol 5:3116–3123

    PubMed  CAS  Google Scholar 

  • Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M, Blasiak J, Skorski T (2006) BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 108:319–327

    Article  PubMed  CAS  Google Scholar 

  • Kothari VC, Advani S, Rao SGA (1986) Growth factors in chronic myelogenous leukemias. Cancer Lett 32:285–292

    Article  PubMed  CAS  Google Scholar 

  • Kurzrock R, Kantarjian HM, Shtalrid M, Gutterman JU, Talpaz M (1990) Philadelphia chromosome-negative chronic myelogenous leukemia without breakpoint cluster region rearrangement: a chronic myeloid leukemia with distinct clinical course. Blood 75:445–452

    PubMed  CAS  Google Scholar 

  • Melo JV (1996a) The molecular biology of chronic myeloid leukemia. Leukemia 10:751–756

    PubMed  CAS  Google Scholar 

  • Melo JV (1996b) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88:2375–2384

    PubMed  CAS  Google Scholar 

  • Melo JV, Myint H, Galton DA, Goldman JM (1994) P190BCR-ABL chronic myeloid leukemia: the missing link with chronic myelomonocytic leukemia? Leukemia 8:208–211

    PubMed  CAS  Google Scholar 

  • Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, Nakao S, Motoyama N, Hirao A (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463:676–680

    Article  PubMed  CAS  Google Scholar 

  • Nakai H, Misawa S (1995) Chromosome 17 abnormalities and inactivation of the p53 gene in chronic myeloid leukemia and their prognostic significance. Leuk Lymphoma 19:213–221

    Article  PubMed  CAS  Google Scholar 

  • Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497–1500

    Google Scholar 

  • Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E, Nieborowska-Skorska M, Blasiak J, Skorski T (2004) BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 104:3746–3753

    Article  PubMed  CAS  Google Scholar 

  • O’Brien S, Berman E, Bhalla K, Copelan EA, Devetten MP, Emanuel PD, Erba HP, Greenberg PL, Moore JO, Przepiorka D, Radich JP, Schilder RJ, Shami P, Smith BD, Snyder DS, Soiffer RJ, Tallman MS, Talpaz M, Wetzler M (2007) Chronic myelogenous leukemia. J Natl Compr Canc Netw 5:474–496

    PubMed  Google Scholar 

  • O’Dwyer ME, Gatter KM, Loriaux M, Druker BJ, Olson SB, Magenis RE, Lawce H, Mauro MJ, Maziarz RT, Braziel RM (2003) Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate. Leukemia 17:481–487

    Article  PubMed  Google Scholar 

  • Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B (1996) Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR-ABL with C3/A2 junction). Blood 88:2410–2414

    PubMed  CAS  Google Scholar 

  • Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T (1994) Bcr-Abl oncoproteins bind directly to activators of the Ras signaling pathway. EMBO J 13:764–773

    PubMed  CAS  Google Scholar 

  • Radich JP (2007) The biology of CML blast crisis. Hematol Am Soc Hematol Educ Program 1:384–391

    Article  Google Scholar 

  • Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, Greenfield EA, Salgia R, Griffin JD (2000) The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 275:24273–24278

    Article  PubMed  CAS  Google Scholar 

  • Sawyers CL, McLaughlin J, Witte ON (1995) Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. J Exp Med 181:307–313

    Article  PubMed  CAS  Google Scholar 

  • Selleri L, Emilia G, Luppi M, Temperani P, Zucchini P, Tagliafico E, Artusi T, Sarti M, Donelli A, Castoldi GL (1990) Chronic myelogenous leukemia with typical clinical and morphological features can be Philadelphia chromosome negative and ‘bcr negative’. Hematol Pathol 4:67–77

    PubMed  CAS  Google Scholar 

  • Shepherd PCA, Ganesan TS, Galton DAG (1987) Haematological classification of the chronic myeloid leukemias. Baillieres Clin Haematol 1:887–906

    Article  PubMed  CAS  Google Scholar 

  • Slupianek A, Hoser G, Majsterek I, Bronisz A, Malecki M, Blasiak J, Fishel R, Skorski T (2002) Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol 22:4189–4201

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann LM, Karhi KK, Shivji MK, Rayter SI, Pegram SM, Dowden G, Bevan D, Will A, Galton DA, Chan LC (1988) The correlation of breakpoint cluster region rearrangement and p210 phl/abl expression with morphological analysis of Ph-negative chronic myeloid leukemia and other myeloproliferative diseases. Blood 71:349–355

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Sacha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sacha, T., Foryciarz, K., Skotnicki, A.B. (2012). Molecular Biology of Chronic Myeloid Leukemia. In: Witt, M., Dawidowska, M., Szczepanski, T. (eds) Molecular Aspects of Hematologic Malignancies. Principles and Practice. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29467-9_6

Download citation

Publish with us

Policies and ethics