Molecular Biology of Chronic Myeloid Leukemia

  • Tomasz Sacha
  • Kajetana Foryciarz
  • Aleksander B. Skotnicki
Part of the Principles and Practice book series (PRINCIPLES)


Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder resulting from an acquired genetic aberration t(9;22)(q34;q11) (Philadelphia chromosome) in stem cells. As a result the BCR/ABL fusion gene is formed which encodes a specific mRNA, translated into BCR/ABL proteins with an abnormally high tyrosine kinase activity, playing a crucial role in leukemic transformation and neoplastic proliferation of hematopoietic stem cells. BCR/ABL protein activates a number of transcription factors and gene promoters; however, its expression does not explain all the biological mechanisms of the origin of CML and its progression. Trisomy of chromosome 8, 19, isochromosome 17, and an additional Ph chromosome are the most frequent additional chromosomal abnormalities detected in course of CML progression. Suppressor genes dysfunction may play a role in the progression of CML. There is a considerable heterogeneity of the molecular mechanism and the genes involved in the development and progression of CML.


Chronic Myeloid Leukemia Chronic Myeloid Leukemia Patient Blast Crisis Blastic Phase Breakpoint Cluster Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abelson HT, Rabstein LS (1970) Lymphosarcoma: virus- induced thymic-independent disease in mice. Cancer Res 30:2213–2222PubMedGoogle Scholar
  2. Altekruse SF, Kosary CL, Krapcho M, Neyman N, Aminou R, Waldron W, Ruhl J, Howlader N, Tatalovich Z, Cho H, Mariotto A, Eisner MP, Lewis DR, Cronin K, Chen HS, Feuer EJ, Stinchcomb DG, Edwards BK (eds) (2010) SEER cancer statistics review, 1975–2007, National Cancer Institute. Bethesda., based on November 2009 SEER data submission, posted to the SEER web site
  3. Apperley J (2007) Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 8:1018–1029PubMedCrossRefGoogle Scholar
  4. Barnes DJ, Palaiologou D, Panousopoulou E, Schultheis B, Yong AS, Wong A, Pattacini L, Goldman JM, Melo JV (2005) BCR-ABL expression levels determine the rate of development of resistance to imatinib mesylate in chronic myeloid leukemia. Cancer Res 65:8912–8919PubMedCrossRefGoogle Scholar
  5. Bedi A, Zehnbauer BA, Barber JP, Sharkis SJ, Jones RJ (1994) Inhibition of apoptosis by BCR-ABL in chronic myeloid leukemia. Blood 83:2038–2044PubMedGoogle Scholar
  6. Biernaux C, Loos M, Sels A, Huez G, Stryckmans P (1995) Detection of major BCR-ABL gene expression at a very low level in blood cells of some healthy individuals. Blood 86:3118–3122PubMedGoogle Scholar
  7. Bose S, Deininger M, Gora-Tybor J, Goldman JM, Melo JV (1998) The presence of typical and atypical BCR-ABL fusion genes in leukocytes of normal individuals: biologic significance and implications for the assessment of minimal residual disease. Blood 92:3362–3367PubMedGoogle Scholar
  8. Bumm T, Müller C, Al-Ali HK, Kron K, Shepherd P, Schmidt E, Leiblein S, Franke C, Hennig E, Friedrich T, Krahl R, Niederwieser D, Deininger MWN (2003) Emergence of clonal cytogenetic abnormalities in Ph– cells in some CML patients in cytogenetic remission to imatinib but restoration of polyclonal hematopoiesis in the majority. Blood 101:1941–1949PubMedCrossRefGoogle Scholar
  9. Cannistra SA (1990) Chronic myelogenous leukaemia as a model for a genetic basis of cancer. Hematol Oncol Clin North Am 48:337–353Google Scholar
  10. Carella AM, Frassoni F, Melo J, Sawyers C, Eaves C, Eaves A, Apperley J, Tura S, Hehlmann R, Reiffers J, Lerma E, Goldman J (1997) New insights in biology and current therapeutic options for patients with chronic myelogenous leukemia. Hematologica 82:478–495Google Scholar
  11. Chissoe SL, Bodenteich A, Wang YF, Wang YP, Burian SW, Dennis C, Crabtree J, Freeman A, Iyer K, Jian L, Ma Y, McLaury HJ, Pan HQ, Sharan O, Toth S, Wong Z, Zhang G, Heisterkamp N, Groffen J, Roe BA (1995) Sequence and analysis of the human ABL gene, the BCR gene, and regions involved in the Philadelphia chromosomal translocation. Genomics 27:67–82PubMedCrossRefGoogle Scholar
  12. Cilloni D, Panuzzo C, Messa F, Arruga F, Bracco E, Bernardoni R, Carturan S, Pautasso M, Messa E, Morotti A, Pradotto M, Iacobucci I, Kalenic T, Martinelli G, Saglio G (2008) Imatinib induced re-activation of FoxO3 transcription factor in CML is responsible for the induction of a quiescent status of CD34 leukaemic progenitor cells. Blood 112:1090Google Scholar
  13. Cogswell PC, Morgan R, Dunn M, Neubauer A, Nelson P, Poland-Johnston NK, Sandberg AA, Liu E (1989) Mutations of the Ras ptotooncogenes in chronic myelogenous leukemia: a high frequency of Ras mutations in bcr/abl rearrangement-negative chronic myelogenous leukemia. Blood 74:2629–2633PubMedGoogle Scholar
  14. Cohen GB, Ren R, Baltimore D (1995) Modular binding domains in signal transduction proteins. Cell 80:237–248PubMedCrossRefGoogle Scholar
  15. Cortez D, Stoica G, Pierce JH, Pendergast AM (1996) The BCR-ABL tyrosine kinase inhibits apoptosis by activating a Ras-dependent signaling pathway. Oncogene 13:2589–2594PubMedGoogle Scholar
  16. Costello R, Lafage M, Toiron Y, Brunel V, Sainty D, Arnoulet C, Mozziconacci MJ, Bouabdallah R, Gastaut J, Maraninchi D, Gabert J (1995) Philadelphia chromosome-negative chronic myeloid leukaemia: a report of 14 new cases. Br J Haematol 90:346–352PubMedCrossRefGoogle Scholar
  17. Dai Z, Pendergast AM (1995) Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev 9:2569–2582PubMedCrossRefGoogle Scholar
  18. Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K, Goldman J, Zaccaria A, Berrebi A, Canaani E (1991) p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad Sci U S A 88:6293–6297PubMedCrossRefGoogle Scholar
  19. Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF (1987) Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 328:342–344PubMedCrossRefGoogle Scholar
  20. Groffen J, Stephenson JR, Heisterkamp N, de Klein A, Bartram CR, Grosveld G (1984) Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell 36:93–99PubMedCrossRefGoogle Scholar
  21. Kessel GAHM, van Agthoven AJ, de Groot PG, Hagemeijer A (1981) Characterization of a complex philadelphia translocation (1p−; 9q+; 22q−) by gene mapping. Human Genet 58:162–165CrossRefGoogle Scholar
  22. Konopka JB, Witte ON (1985) Detection of c-abl tyrosine kinase activity in vitro permits direct comparison of normal and altered abl gene products. Mol Cell Biol 5:3116–3123PubMedGoogle Scholar
  23. Koptyra M, Falinski R, Nowicki MO, Stoklosa T, Majsterek I, Nieborowska-Skorska M, Blasiak J, Skorski T (2006) BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood 108:319–327PubMedCrossRefGoogle Scholar
  24. Kothari VC, Advani S, Rao SGA (1986) Growth factors in chronic myelogenous leukemias. Cancer Lett 32:285–292PubMedCrossRefGoogle Scholar
  25. Kurzrock R, Kantarjian HM, Shtalrid M, Gutterman JU, Talpaz M (1990) Philadelphia chromosome-negative chronic myelogenous leukemia without breakpoint cluster region rearrangement: a chronic myeloid leukemia with distinct clinical course. Blood 75:445–452PubMedGoogle Scholar
  26. Melo JV (1996a) The molecular biology of chronic myeloid leukemia. Leukemia 10:751–756PubMedGoogle Scholar
  27. Melo JV (1996b) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88:2375–2384PubMedGoogle Scholar
  28. Melo JV, Myint H, Galton DA, Goldman JM (1994) P190BCR-ABL chronic myeloid leukemia: the missing link with chronic myelomonocytic leukemia? Leukemia 8:208–211PubMedGoogle Scholar
  29. Naka K, Hoshii T, Muraguchi T, Tadokoro Y, Ooshio T, Kondo Y, Nakao S, Motoyama N, Hirao A (2010) TGF-beta-FOXO signalling maintains leukaemia-initiating cells in chronic myeloid leukaemia. Nature 463:676–680PubMedCrossRefGoogle Scholar
  30. Nakai H, Misawa S (1995) Chromosome 17 abnormalities and inactivation of the p53 gene in chronic myeloid leukemia and their prognostic significance. Leuk Lymphoma 19:213–221PubMedCrossRefGoogle Scholar
  31. Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497–1500Google Scholar
  32. Nowicki MO, Falinski R, Koptyra M, Slupianek A, Stoklosa T, Gloc E, Nieborowska-Skorska M, Blasiak J, Skorski T (2004) BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood 104:3746–3753PubMedCrossRefGoogle Scholar
  33. O’Brien S, Berman E, Bhalla K, Copelan EA, Devetten MP, Emanuel PD, Erba HP, Greenberg PL, Moore JO, Przepiorka D, Radich JP, Schilder RJ, Shami P, Smith BD, Snyder DS, Soiffer RJ, Tallman MS, Talpaz M, Wetzler M (2007) Chronic myelogenous leukemia. J Natl Compr Canc Netw 5:474–496PubMedGoogle Scholar
  34. O’Dwyer ME, Gatter KM, Loriaux M, Druker BJ, Olson SB, Magenis RE, Lawce H, Mauro MJ, Maziarz RT, Braziel RM (2003) Demonstration of Philadelphia chromosome negative abnormal clones in patients with chronic myelogenous leukemia during major cytogenetic responses induced by imatinib mesylate. Leukemia 17:481–487PubMedCrossRefGoogle Scholar
  35. Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R, Meloni G, Saglio G, Salvatore F, Rotoli B (1996) Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR-ABL with C3/A2 junction). Blood 88:2410–2414PubMedGoogle Scholar
  36. Puil L, Liu J, Gish G, Mbamalu G, Bowtell D, Pelicci PG, Arlinghaus R, Pawson T (1994) Bcr-Abl oncoproteins bind directly to activators of the Ras signaling pathway. EMBO J 13:764–773PubMedGoogle Scholar
  37. Radich JP (2007) The biology of CML blast crisis. Hematol Am Soc Hematol Educ Program 1:384–391CrossRefGoogle Scholar
  38. Sattler M, Verma S, Shrikhande G, Byrne CH, Pride YB, Winkler T, Greenfield EA, Salgia R, Griffin JD (2000) The BCR/ABL tyrosine kinase induces production of reactive oxygen species in hematopoietic cells. J Biol Chem 275:24273–24278PubMedCrossRefGoogle Scholar
  39. Sawyers CL, McLaughlin J, Witte ON (1995) Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. J Exp Med 181:307–313PubMedCrossRefGoogle Scholar
  40. Selleri L, Emilia G, Luppi M, Temperani P, Zucchini P, Tagliafico E, Artusi T, Sarti M, Donelli A, Castoldi GL (1990) Chronic myelogenous leukemia with typical clinical and morphological features can be Philadelphia chromosome negative and ‘bcr negative’. Hematol Pathol 4:67–77PubMedGoogle Scholar
  41. Shepherd PCA, Ganesan TS, Galton DAG (1987) Haematological classification of the chronic myeloid leukemias. Baillieres Clin Haematol 1:887–906PubMedCrossRefGoogle Scholar
  42. Slupianek A, Hoser G, Majsterek I, Bronisz A, Malecki M, Blasiak J, Fishel R, Skorski T (2002) Fusion tyrosine kinases induce drug resistance by stimulation of homology-dependent recombination repair, prolongation of G(2)/M phase, and protection from apoptosis. Mol Cell Biol 22:4189–4201PubMedCrossRefGoogle Scholar
  43. Wiedemann LM, Karhi KK, Shivji MK, Rayter SI, Pegram SM, Dowden G, Bevan D, Will A, Galton DA, Chan LC (1988) The correlation of breakpoint cluster region rearrangement and p210 phl/abl expression with morphological analysis of Ph-negative chronic myeloid leukemia and other myeloproliferative diseases. Blood 71:349–355PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tomasz Sacha
    • 1
  • Kajetana Foryciarz
    • 2
  • Aleksander B. Skotnicki
    • 1
  1. 1.Department of HematologyJagiellonian University Hospital in KrakówKrakówPoland
  2. 2.Pharmaceutical Research Associates Sp. z o.o.WarsawPoland

Personalised recommendations