Genetic Mechanisms and Molecular Markers of Neoplastic Transformation in Acute Myeloid Leukemia

  • Agata A. Filip
  • Marta Libura
  • Sebastian Giebel
  • Olga Haus
Part of the Principles and Practice book series (PRINCIPLES)


Acute myeloid leukemia (AML) constitutes a group of diseases heterogeneous with regard to clinical course, response to therapy as well as genetic features that contribute to disease pathogenesis, progression, and outcome. Numerous molecular lesions found in AML patients serve as prognostic and predictive factors; some of these markers have been included in the latest WHO classification. The analysis of cryptic genomic changes and alterations of gene expression is particularly important in cytogenetically normal AML patients. NPM1 and biallelic CEBPA mutations are favorable prognostic factors, while MLL and FLT3 duplications, WT1, IDH1/IDH2, KIT, TET2, and DNMT3A mutations, as well as overexpression of BAALC, ERG, or MN1 have an adverse prognostic impact. Aside from aberrations involving structural genes, mutations of microRNAs, copy number alterations, and altered methylation of gene promoter regions also influence the development and progression of AML.


Acute Myeloid Leukemia Disseminate Intravascular Coagulation Acute Promyelocytic Leukemia Minimal Residual Disease Acute Myeloid Leukemia Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dorothy Michalowski for proofreading and editing assistance.


  1. Altucci L, Minucci S (2009) Epigenetic therapies in haematological malignancies: searching for true targets. Eur J Cancer 45:1137–1145PubMedCrossRefGoogle Scholar
  2. Alvarez S, Suela J, Valencia A, Fernández A, Wunderlich M, Agirre X, Prósper F, Martín-Subero JI, Maiques A, Acquadro F, Rodriguez Perales S, Calasanz MJ, Roman-Gómez J, Siebert R, Mulloy JC, Cervera J, Sanz MA, Esteller M, Cigudosa JC (2010) DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia. PLoS ONE 5(8):e12197. doi: 10.1371/journal.pone.0012197 PubMedCrossRefGoogle Scholar
  3. Bacher U, Kohlmann A, Haferlach T (2010a) Gene expression profiling for diagnosis and therapy in acute leukaemia and other hematologic malignancies. Cancer Treat Rev 36:637–646PubMedCrossRefGoogle Scholar
  4. Bacher U, Schnitter S, Haferlach T (2010b) Molecular genetics in acute myeloid leukemia. Curr Opin Oncol 22:646–655PubMedCrossRefGoogle Scholar
  5. Baldus CD, Thiede C, Soucek S, Bloomfield CD, Thiel E, Ehninger G (2006) BAALC expression and FLT3 internal tandem duplication mutations in acute myeloid leukemia patients with normal cytogenetics: prognostic implications. J Clin Oncol 24:790–797PubMedCrossRefGoogle Scholar
  6. Balgobind BV, Zwaan CM, Pieters R, Van den Heuvel-Eibrink MM (2011) The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia. Leukemia 25:1239–1248PubMedCrossRefGoogle Scholar
  7. Becker H, Marcucci G, Maharry K, Radmacher MD, Mrózek K, Margeson D, Whitman SP, Wu YZ, Schwind S, Paschka P, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson RA, Bloomfield CD (2010) Favorable prognostic impact of NPM1 mutations in older patients with cytogenetically normal de novo acute myeloid leukemia and associated gene- and microRNA-expression signatures: a Cancer and Leukemia Group B study. J Clin Oncol 28:596–604PubMedCrossRefGoogle Scholar
  8. Betz BL, Hess JL (2010) Acute myeloid leukemia diagnosis in the 21st century. Arch Pathol Lab Med 134:1427–1433PubMedGoogle Scholar
  9. Bienz M, Ludwig M, Leibundgut EO, Mueller BU, Ratschiller D, Solenthaler M, Fey MF, Pabst T (2005) Risk assessment in patients with acute myeloid leukemia and a normal karyotype. Clin Cancer Res 11:1416–1424PubMedCrossRefGoogle Scholar
  10. Breccia M, Diverio D, Noguera NI, Visani G, Santoro A, Locatelli F, Damiani D, Marmont F, Vignetti M, Petti MC, Lo Coco F (2004) Clinico-biological features and outcome of acute promyelocytic leukemia patients with persistent polymerase chain reaction detectable disease after the AIDA front-line induction and consolidation therapy. Haematologica 89:29–33PubMedGoogle Scholar
  11. Bullinger L, Krönke J, Schön C, Radtke I, Urlbauer K, Botzenhardt U, Gaidzik V, Carió A, Senger C, Schlenk RF, Downing JR, Holzmann K, Döhner K, Döhner H (2010) Identification of acquired copy number alterations and uniparental disomies in cytogenetically normal acute myeloid leukemia using high-resolution single-nucleotide polymorphism analysis. Leukemia 24:438–449PubMedCrossRefGoogle Scholar
  12. Dang L, Jin S, Su SM (2010) IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med 16:287–397CrossRefGoogle Scholar
  13. Deguchi K, Gilliland DG (2002) Cooperativity between mutations in tyrosine kinases and in hematopoietic transcription factors in AML. Leukemia 16:740–744PubMedCrossRefGoogle Scholar
  14. Delgado MD, Leon J (2010) Myc roles in hematopoiesis and leukemia. Genes Cancer 1:605–616PubMedCrossRefGoogle Scholar
  15. Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, Lo-Coco F, Naoe T, Niederwieser D, Ossenkoppele GJ, Sanz MA, Sierra J, Tallman MS, Löwenberg B, Bloomfield CD (2010) Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 115:453–474PubMedCrossRefGoogle Scholar
  16. Dufour A, Schneider F, Metzeler KH, Hoster E, Schneider S, Zellmeier E, Benthaus T, Sauerland MC, Berdel WE, Buchner T, Wormann B, Braess J, Hiddemann W, Bohlander SK, Spiekemann K (2010) Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol 28:570–577PubMedCrossRefGoogle Scholar
  17. Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, Tallman MS, Sun Z, Wolniak K, Peeters JK, Liu W, Choe SE, Fantin VR, Paietta E, Löwenberg B, Licht JD, Godley LA, Delwel R, Valk PJ, Thompson CB, Levine RL, Melnick A (2010a) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18:553–567PubMedCrossRefGoogle Scholar
  18. Figueroa ME, Lugthart S, Li Y, Erpelinck-Verschueren C, Deng X, Christos PJ, Schifano E, Booth J, van Putten W, Skrabanek L, Campagne F, Mazumdar M, Greally JM, Valk PJ, Löwenberg B, Delwel R, Melnick A (2010b) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 17:13–27PubMedCrossRefGoogle Scholar
  19. Foran JM (2010) New prognostic markers in acute myeloid leukemia: perspective from the clinic. Hematol Am Soc Hematol Educ Program 2010:47–55CrossRefGoogle Scholar
  20. Gaidzik VI, Bullinger L, Schlenk RF, Zimmermann AS, Röck J, Paschka P, Corbacioglu A, Krauter J, Schlegelberger B, Ganser A, Späth D, Kündgen A, Schmidt-Wolf IG, Götze K, Nachbaur D, Pfreundschuh M, Horst HA, Döhner H, Döhner K (2011) RUNX1 mutations in acute myeloid leukemia: results from a comprehensive genetic and clinical analysis from the AML Study Group. J Clin Oncol 29:1364–1372PubMedCrossRefGoogle Scholar
  21. Garzon R, Volinia S, Liu CG, Fernandez-Cymering C, Palumbo T, Pichiorri F, Fabbri M, Coombes K, Alder H, Nakamura T, Flomenberg N, Marcucci G, Calin GA, Kornblau SM, Kantarjian H, Bloomfield CD, Andreeff M, Croce CM (2008) MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 111:3183–3189PubMedCrossRefGoogle Scholar
  22. Gilliland DG (2001) Hematologic malignancies. Curr Opin Hematol 8:189–191PubMedCrossRefGoogle Scholar
  23. Gregory TK, Wald D, Chen Y, Vermaat JM, Xiong Y, Tse W (2009) Molecular prognostic markers for adult acute myeloid leukemia with normal cytogenetics. J Hematol Oncol 2:23. doi: 10.1186/1756-8722-2-23 PubMedCrossRefGoogle Scholar
  24. Grimwade D, Hills RK (2009) Independent prognostic factors for AML outcome. Hematol Am Soc Hematol Educ Program 2009(1):385–395CrossRefGoogle Scholar
  25. Grimwade D, Jovanovic JV, Hills RK, Nugent EA, Patel Y, Flora R, Diverio D, Jones K, Aslett H, Batson E, Rennie K, Angell R, Clark RE, Solomon E, Lo-Coco F, Wheatley K, Burnett AK (2009) Prospective minimal residual disease monitoring to predict relapse of acute promyelocytic leukemia and to direct pre-emptive arsenic trioxide therapy. J Clin Oncol 27:3650–3658PubMedCrossRefGoogle Scholar
  26. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G, Rees J, Hann I, Stevens R, Burnett A, Goldstone A (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 92:2322–2333PubMedGoogle Scholar
  27. Gulley ML, Shea TC, Fedoriw Y (2010) Genetic tests to evaluate prognosis and predict therapeutic response in acute myeloid leukemia. J Mol Diagn 12:3–16PubMedCrossRefGoogle Scholar
  28. Haus O, Duszeńko E, Jaśkowiec A, Skonieczka K (2009) Gene amplification in hematologic malignancies [Polish]. Acta Haem Pol 40:313–319Google Scholar
  29. Heinrichs S, Li C, Look AT (2010) SNP array analysis in hematologic malignancies: avoiding false discoveries. Blood 115:4157–4161PubMedCrossRefGoogle Scholar
  30. Heuser M, Beutel G, Krauter J, Döhner K, von Neuhoff N, Schlegelberger B, Ganser A (2006) High meningioma 1 (MN1) expression as a predictor for poor outcome in acute myeloid leukemia with normal cytogenetics. Blood 108:3898–3905PubMedCrossRefGoogle Scholar
  31. Kelly LM, Gilliland DG (2002) Genetics of myeloid leukemias. Annu Rev Genomics Hum Genet 3:179–198PubMedCrossRefGoogle Scholar
  32. Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, Liu XS, Aravind L, Agarwal S, Maciejewski JP, Rao A (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839–843PubMedCrossRefGoogle Scholar
  33. Kroeger H, Jelinek J, Estécio MR, He R, Kondo K, Chung W, Zhang L, Shen L, Kantarjian HM, Bueso-Ramos CE, Issa JP (2008) Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse. Blood 112:1366–1373PubMedCrossRefGoogle Scholar
  34. Krönke J, Schlenk RF, Jensen KO, Tschürtz F, Corbacioglu A, Gaidzik VI, Paschka P, Onken S, Eiwen K, Habdank M, Späth D, Lübbert M, Wattad M, Kindler T, Salih HR, Held G, Nachbaur D, von Lilienfeld-Toal M, Germing U, Haase D, Mergenthaler HG, Krauter J, Ganser A, Göhring G, Schlegelberger B, Döhner H, Döhner K (2011) Monitoring of minimal residual disease in NPM1-mutated acute myeloid leukemia: a study from the German-Austrian Acute Myeloid Leukemia Study Group. J Clin Oncol 29:2709–2716PubMedCrossRefGoogle Scholar
  35. Langer C, Marcucci G, Holland KB, Radmacher MD, Maharry K, Paschka P, Whitman SP, Mrózek K, Baldus CD, Vij R, Powell BL, Carroll AJ, Kolitz JE, Caligiuri MA, Larson RA, Bloomfield CD (2009) Prognostic importance of MN1 transcript levels, and biologic insights from MN1-associated gene and microRNA expression signatures in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 27:3198–3204PubMedCrossRefGoogle Scholar
  36. Levis M, Allebach J, Tse KF, Zheng R, Baldwin BR, Smith BD, Jones-Bolin S, Ruggeri B, Dionne C, Small D (2002) A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood 99:3885–3891PubMedCrossRefGoogle Scholar
  37. Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, Harris CC, Lichti CF, Townsend RR, Fulton RS, Dooling DJ, Koboldt DC, Schmidt H, Zhang Q, Osborne JR, Lin L, O’Laughlin M, McMichael JF, Delehaunty KD, McGrath SD, Fulton LA, Magrini VJ, Vickery TL, Hundal J, Cook LL, Conyers JJ, Swift GW, Reed JP, Alldredge PA, Wylie T, Walker J, Kalicki J, Watson MA, Heath S, Shannon WD, Varghese N, Nagarajan R, Westervelt P, Tomasson MH, Link DC, Graubert TA, DiPersio JF, Mardis ER, Wilson RK (2010) DNMT3A mutations in acute myeloid leukemia. N Engl J Med 363:2424–2433PubMedCrossRefGoogle Scholar
  38. Libura M, Asnafi V, Tu A, Delabesse E, Tigaud I, Cymbalista F, Bennaceur-Griscelli A, Villarese P, Solbu G, Hagemeijer A, Beldjord K, Hermine O, Macintyre E (2003) FLT3 and MLL intragenic abnormalities in AML reflect a common category of genotoxic stress. Blood 102:2198–2204PubMedCrossRefGoogle Scholar
  39. Licht JD, Sternberg DW (2005) The molecular pathology of acute myeloid leukemia. Hematol Am Soc Hematol Educ Program 2005(1):137–142CrossRefGoogle Scholar
  40. Maki K, Yamagata T, Mitani K (2008) Role of the RUNX1-EVI1 fusion gene in leukemogenesis. Cancer Sci 99:1878–1883PubMedGoogle Scholar
  41. Makishima H, Cazzolli H, Szpurka H, Dunbar A, Tiu R, Huh J, Muramatsu H, O’Keefe C, Hsi E, Paquette RL, Kojima S, List AF, Sekeres MA, McDevitt MA, Maciejewski JP (2009) Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol 27:6109–6116PubMedCrossRefGoogle Scholar
  42. Marcucci G, Baldus CD, Ruppert AS, Radmacher MD, Mrózek K, Whitman SP, Kolitz JE, Edwards CG, Vardiman JW, Powell BL, Baer MR, Moore JO, Perrotti D, Caligiuri MA, Carroll AJ, Larson RA, de la Chapelle A, Bloomfield CD (2005) Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. J Clin Oncol 23:9234–9242PubMedCrossRefGoogle Scholar
  43. Marcucci G, Maharry K, Whitman SP, Vukosavljevic T, Paschka P, Langer C, Mrózek K, Baldus CD, Carroll AJ, Powell BL, Kolitz JE, Larson RA, Bloomfield CD (2007) High expression levels of the ETS-related gene, ERG, predict adverse outcome and improve molecular risk-based classification of cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 25:3337–3343PubMedCrossRefGoogle Scholar
  44. Marcucci G, Maharry K, Wu YZ, Radmacher MD, Mrózek K, Margeson D, Holland KB, Whitman SP, Becker H, Schwind S, Metzeler KH, Powell BL, Carter TH, Kolitz JE, Wetzler M, Carroll AJ, Baer MR, Caligiuri MA, Larson RA, Bloomfield CD (2010) IDH1 and IDH2 gene mutations identify novel molecular subsets within de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28:2348–2355PubMedCrossRefGoogle Scholar
  45. Marcucci G, Mrózek K, Radmacher MD, Garzon R, Bloomfield CD (2011) The prognostic and functional role of microRNAs in acute myeloid leukemia. Blood 117:1121–1129PubMedCrossRefGoogle Scholar
  46. Mardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, Koboldt DC, Fulton RS, Delehaunty KD, McGrath SD, Fulton LA, Locke DP, Magrini VJ, Abbott RM, Vickery TL, Reed JS, Robinson JS, Wylie T, Smith SM, Carmichael L, Eldred JM, Harris CC, Walker J, Peck JB, Du F, Dukes AF, Sanderson GE, Brummett AM, Clark E, McMichael JF, Meyer RJ, Schindler JK, Pohl CS, Wallis JW, Shi X, Lin L, Schmidt H, Tang Y, Haipek C, Wiechert ME, Ivy JV, Kalicki J, Elliott G, Ries RE, Payton JE, Westervelt P, Tomasson MH, Watson MA, Baty J, Heath S, Shannon WD, Nagarajan R, Link DC, Walter MJ, Graubert TA, DiPersio JF, Wilson RK, Ley TJ (2009) Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med 361:1058–1066PubMedCrossRefGoogle Scholar
  47. Martens JH, Stunnenberg HG (2010) The molecular signature of oncofusion proteins in acute myeloid leukemia. FEBS Lett 584:2662–2669PubMedCrossRefGoogle Scholar
  48. Meshinchi S, Stirewalt DL, Alonzo TA, Boggon TJ, Gerbing RB, Rocnik JL, Lange BJ, Gilliland DG, Radich JP (2008) Structural and numerical variation of FLT3/ITD in pediatric AML. Blood 111:4930–4933PubMedCrossRefGoogle Scholar
  49. Metzeler KH, Dufour A, Benthaus T, Hummel M, Sauerland MC, Heinecke A, Berdel WE, Büchner T, Wörmann B, Mansmann U, Braess J, Spiekermann K, Hiddemann W, Buske C, Bohlander SK (2009) ERG expression is an independent prognostic factor and allows refined risk stratification in cytogenetically normal acute myeloid leukemia: a comprehensive analysis of ERG, MN1, and BAALC transcript levels using oligonucleotide microarrays. J Clin Oncol 27:5031–5038PubMedCrossRefGoogle Scholar
  50. Metzeler KH, Maharry K, Radmacher MD, Mrózek K, Margeson D, Becker H, Curfman J, Holland KB, Schwind S, Whitman SP, Wu YZ, Blum W, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer MR, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD (2011) TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 29:1373–1381PubMedCrossRefGoogle Scholar
  51. Mohamed A (2010) MLL amplification in leukemia. Atlas Genet Cytogenet Oncol Haematol. Cited 22 Dec 2011
  52. Mohr F, Döhner K, Buske C, Rawat VP (2011) TET genes: new players in DNA demethylation and important determinants for stemness. Exp Hematol 39:272–281PubMedCrossRefGoogle Scholar
  53. Mrózek K, Marcucci G, Paschka P, Whitman SP, Bloomfield CD (2007) Clinical relevance of mutations and gene expression changes in adult acute myeloid leukemia with normal cytogenetics: are we ready for a prognostically prioritized molecular classification? Blood 109:431–448PubMedCrossRefGoogle Scholar
  54. Nibourel O, Kosmider O, Cheok M, Boissel N, Renneville A, Philippe N, Dombret H, Dreyfus F, Quesnel B, Geffroy S, Quentin S, Roche-Lestienne C, Cayuela JM, Roumier C, Fenaux P, Vainchenker W, Bernard OA, Soulier J, Fontenay M, Preudhomme C (2010) Incidence and prognostic value of TET2 alterations in de novo acute myeloid leukemia achieving complete remission. Blood 116:1132–1135PubMedCrossRefGoogle Scholar
  55. O’Farrell A-M, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW, Wong LM, Hong W, Lee LB, Town A, Smolich BD, Manning WC, Murray LJ, Heinrich MC, Cherrington JM (2003) SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101:3597–3605PubMedCrossRefGoogle Scholar
  56. Parkin B, Erba H, Ouillette P, Roulston D, Purkayastha A, Karp J, Talpaz M, Kujawski L, Shakhan S, Li C, Shedden K, Malek SN (2010) Acquired genomic copy number aberrations and survival in adult acute myelogenous leukemia. Blood 116:4958–4967PubMedCrossRefGoogle Scholar
  57. Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Krönke J, Bullinger L, Späth D, Kayser S, Zucknick M, Götze K, Horst HA, Germing U, Döhner H, Döhner K (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28:3636–3643PubMedCrossRefGoogle Scholar
  58. Röllig C, Bornhäuser M, Thiede C, Taube F, Kramer M, Mohr B, Aulitzky W, Bodenstein H, Tischler HJ, Stuhlmann R, Schuler U, Stölzel F, von Bonin M, Wandt H, Schäfer-Eckart K, Schaich M, Ehninger G (2011) Long-term prognosis of acute myeloid leukemia according to the new genetic risk classification of the European LeukemiaNet recommendations: evaluation of the proposed reporting system. J Clin Oncol 29:2758–2765PubMedCrossRefGoogle Scholar
  59. Sanz MA, Grimwade D, Tallman MS, Lowenberg B, Fenaux P, Estey EH, Naoe T, Lengfelder E, Büchner T, Döhner H, Burnett AK, Lo-Coco F (2009) Management of acute promyelocytic leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 113:1875–1891PubMedCrossRefGoogle Scholar
  60. Schotte D, De Menezes RX, Akbari Moqadam F, Mohammadi Khankahdani L, Lange-Turenhout E, Chen C, Pieters R, Den Boer ML (2011) MicroRNAs characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica 96:703–711PubMedCrossRefGoogle Scholar
  61. Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D, Whitman SP, Hickey C, Becker H, Metzeler KH, Paschka P, Baldus CD, Liu S, Garzon R, Powell BL, Kolitz JE, Carroll AJ, Caligiuri MA, Larson RA, Marcucci G, Bloomfield CD (2010a) Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 28:5257–5264PubMedCrossRefGoogle Scholar
  62. Schwind S, Marcucci G, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D, Becker H, Whitman SP, Wu YZ, Metzeler KH, Powell BL, Kolitz JE, Carter TH, Moore JO, Baer MR, Carroll AJ, Caligiuri MA, Larson RA, Bloomfield CD (2010b) BAALC and ERG expression levels are associated with outcome and distinct gene and microRNA expression profiles in older patients with de novo cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 116:5660–5669PubMedCrossRefGoogle Scholar
  63. Seca H, Almeida GM, Guimarães JE, Vasconcelos MH (2010) miR signatures and the role of miRs in acute myeloid leukaemia. Eur J Cancer 46:1520–1527PubMedCrossRefGoogle Scholar
  64. Slovak ML, Kopecky KJ, Cassileth PA, Harrington DH, Theil KS, Mohamed A, Paietta E, Willman CL, Head DR, Rowe JM, Forman SJ, Appelbaum FR (2000) Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood 96:4075–4083PubMedGoogle Scholar
  65. Smith ML, Hills RK, Grimwade D (2011) Independent prognostic variables in acute myeloid leukaemia. Blood Rev 25:39–51PubMedCrossRefGoogle Scholar
  66. Taskesen E, Bullinger L, Corbacioglu A, Sanders M, Erpelinck CA, Wouters BJ, van der Poel-van de Luytgaarde SC, Damm F, Krauter J, Ganser A, Schlenk RF, Löwenberg B, Delwel R, Dohner H, Valk PJ, Dohner K (2011) Prognostic impact, concurrent genetic mutations and gene expression features of AML with CEBPA mutations in a cohort of 1182 cytogenetically normal AML: further evidence for CEBPA double mutant AML as a distinctive disease entity. Blood 117:2469–2475PubMedCrossRefGoogle Scholar
  67. Thiede C, Koch S, Creutzig E, Steudel C, Illmer T, Schaich M, Ehninger G (2006) Prevalence and prognostic impact of NPM1 mutations in 1485 adult patients with acute myeloid leukemia (AML). Blood 107:4011–4020PubMedCrossRefGoogle Scholar
  68. Tiu RV, Gondek LP, O’Keefe CL, Elson P, Huh J, Mohamedali A, Kulasekararaj A, Advani AS, Paquette R, List AF, Sekeres MA, McDevitt MA, Mufti GJ, Maciejewski JP (2011) Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 117:4552–4560PubMedCrossRefGoogle Scholar
  69. Vardiman JW, Brunning RD, Arber DA (2008) Introduction and overview of the classification of the myeloid neoplasms. In: Swerdlow SH, Campo E, Harris NL et al (eds) WHO classification of tumours of haematopoietic and lymphoid tissues. IARC Press, Lyon, pp 18–30Google Scholar
  70. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951PubMedCrossRefGoogle Scholar
  71. Walker A, Marcucci G (2011) Impact of molecular prognostic factors in cytogenetically normal acute myeloid leukemia at diagnosis and relapse. Haematologica 96:640–643PubMedCrossRefGoogle Scholar
  72. Weisberg E, Boulton C, Kelly LM, Manley P, Fabbro D, Meyer T, Gilliland DG, Griffin JD (2002) Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell 1:433–443PubMedCrossRefGoogle Scholar
  73. Whitman SP, Maharry K, Radmacher MD, Becker H, Mrózek K, Margeson D, Holland KB, Wu YZ, Schwind S, Metzeler KH, Wen J, Baer MR, Powell BL, Carter TH, Kolitz JE, Wetzler M, Moore JO, Stone RM, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD (2010) FLT3 internal tandem duplication associates with adverse outcome and gene- and microRNA-expression signatures in patients 60 years of age or older with primary cytogenetically normal acute myeloid leukemia: a Cancer and Leukemia Group B study. Blood 116:3622–3626PubMedCrossRefGoogle Scholar
  74. Whitman SP, Ruppert AS, Marcucci G, Mrózek K, Paschka P, Langer C, Baldus CD, Wen J, Vukosavljevic T, Powell BL, Carroll AJ, Kolitz JE, Larson RA, Caligiuri MA, Bloomfield CD (2007) Long-term disease-free survivors with cytogenetically normal acute myeloid leukemia and MLL partial tandem duplication: a Cancer and Leukemia Group B study. Blood 109:5164–5167PubMedCrossRefGoogle Scholar
  75. Yan XJ, Xu J, Gu ZH, Pan CM, Lu G, Shen Y, Shi JY, Zhu YM, Tang L, Zhang XW, Liang WX, Mi JQ, Song HD, Li KQ, Chen Z, Chen SJ (2011) Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia. Nat Genet 43:309–315PubMedCrossRefGoogle Scholar
  76. Zarrinkar PP, Gunawardane RN, Cramer MD, Gardner MF, Brigham D, Belli B, Karaman MW, Pratz KW, Pallares G, Chao Q, Sprankle KG, Patel HK, Levis M, Armstrong RC, James J, Bhagwat SS (2009) AC220 is a uniquely potent and selective inhibitor of FLT3 for the treatment of acute myeloid leukemia (AML). Blood 114:2984–2992PubMedCrossRefGoogle Scholar
  77. Zuo Z, Chandra P, Wen YH, Koeppen H (2009) Molecular diagnostics of acute myeloid leukaemia. Diagn Histopathol 15:531–539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Agata A. Filip
    • 1
  • Marta Libura
    • 2
  • Sebastian Giebel
    • 3
  • Olga Haus
    • 4
    • 5
  1. 1.Department of Cancer GeneticsMedical University of LublinLublinPoland
  2. 2.Department of Hematology, Oncology and Internal MedicineMedical University of WarsawWarsawPoland
  3. 3.Department of Bone Marrow TransplantationMaria Skłodowska-Curie Memorial Cancer Center and Institute of OncologyGliwicePoland
  4. 4.Department of Clinical GeneticsLudwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in ToruńBydgoszczPoland
  5. 5.Department of HematologyWrocław Medical UniversityWrocławPoland

Personalised recommendations