Advertisement

Chimerism Following Allogeneic Transplantation of Hematopoietic Stem Cells

  • Małgorzata Dawidowska
  • Katarzyna Guz
  • Ewa Brojer
  • Jacek Wachowiak
  • Michał Witt
Chapter
Part of the Principles and Practice book series (PRINCIPLES)

Abstract

Posttransplant hematopoietic chimerism is a condition caused by allogeneic hematopoietic stem cell transplantation. The chimerism is characterized by the presence of at least two genetically distinct cell populations in the body of the transplant recipient. Chimerism monitoring is a recognized tool for documentation of engraftment or graft failure, for assessment of the risk of graft rejection, occurrence of graft-versus-host disease, and the risk of relapse. Analysis of chimerism kinetics enables early identification of these adverse posttransplant events, as well as early intervention through adequate treatment and assessment of treatment effectiveness. This chapter presents essentials of chimerism classification and clinical significance of chimerism monitoring. Routinely used approaches for chimerism analysis are also discussed: analysis of short tandem repeat polymorphism with the use of fluorescent polymerase chain reaction and analysis of indel, null, and single-nucleotide polymorphism markers by real-time polymerase chain reaction.

Keywords

Minimal Residual Disease Single Nucleotide Polymorphism Marker Reduce Intensity Conditioning Mixed Chimerism Chimerism Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This chapter was partly supported by the Ministry of Science and Higher Education, grant N N407 311 839.

References

  1. Agrawal S, Khan F, Talwar S, Nityanand S (2004) Short tandem repeat technology has diverse applications: individual identification, phylogenetic reconstruction and chimerism based post haematopoietic stem cell transplantation graft monitoring. Indian J Med Sci 58(7):297–304PubMedGoogle Scholar
  2. Alizadeh M, Bernard M, Danic B, Dauriac C, Birebent B, Lapart C, Lamy T, Le Prise PY, Beauplet A, Bories D, Semana G, Quelvennec E (2002) Quantitative assessment of hematopoietic chimerism after bone marrow transplantation by real-time quantitative polymerase chain reaction. Blood 99(12):4618–4625PubMedCrossRefGoogle Scholar
  3. Antin JH, Childs R, Filipovich AH, Giralt S, Mackinnon S, Spitzer T, Weisdorf D (2001) Establishment of complete and mixed donor chimerism after allogeneic lymphohematopoietic transplantation: recommendations from a workshop at the 2001 Tandem Meetings of the International Bone Marrow Transplant Registry and the American Society of Blood and Marrow Transplantation. Biol Blood Marrow Transplant 7(9):473–485. doi: 10.1053/bbmt.2001.v7.pm11669214, S1083-8791(01)50035-3X [pii]PubMedCrossRefGoogle Scholar
  4. Bacher U, Haferlach T, Fehse B, Schnittger S, Kroger N (2011) Minimal residual disease diagnostics and chimerism in the post-transplant period in acute myeloid leukemia. Sci World J 11:310–319. doi: 10.1100/tsw.2011.16, 1704715 [pii]CrossRefGoogle Scholar
  5. Bader P, Beck J, Frey A, Schlegel PG, Hebarth H, Handgretinger R, Einsele H, Niemeyer C, Benda N, Faul C, Kanz L, Niethammer D, Klingebiel T (1998) Serial and quantitative analysis of mixed hematopoietic chimerism by PCR in patients with acute leukemias allows the prediction of relapse after allogeneic BMT. Bone Marrow Transplant 21(5):487–495PubMedCrossRefGoogle Scholar
  6. Bader P, Kreyenberg H, Hoelle W, Dueckers G, Handgretinger R, Lang P, Kremens B, Dilloo D, Sykora KW, Schrappe M, Niemeyer C, Von Stackelberg A, Gruhn B, Henze G, Greil J, Niethammer D, Dietz K, Beck JF, Klingebiel T (2004) Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: possible role for pre-emptive immunotherapy? J Clin Oncol 22(9):1696–1705PubMedCrossRefGoogle Scholar
  7. Bader P, Niethammer D, Willasch A, Kreyenberg H, Klingebiel T (2005) How and when should we monitor chimerism after allogeneic stem cell transplantation? Bone Marrow Transplant 35(2):107–119. doi: 10.1038/sj.bmt.1704715, 1704715 [pii]PubMedCrossRefGoogle Scholar
  8. Bader P, Willasch A, Klingebiel T (2008) Monitoring of post-transplant remission of childhood malignancies: is there a standard? Bone Marrow Transplant 42(Suppl 2):S31–S34. doi: 10.1038/bmt.2008.280, bmt2008280 [pii]PubMedCrossRefGoogle Scholar
  9. Bai L, Deng YM, Dodds AJ, Milliken S, Moore J, Ma DD (2006) A SYBR green-based real-time PCR method for detection of haemopoietic chimerism in allogeneic haemopoietic stem cell transplant recipients. Eur J Haematol 77(5):425–431. doi: 10.1111/j.1600-0609.2006.00729.x, EJH729 [pii]PubMedCrossRefGoogle Scholar
  10. Baron F, Baker JE, Storb R, Gooley TA, Sandmaier BM, Maris MB, Maloney DG, Heimfeld S, Oparin D, Zellmer E, Radich JP, Grumet FC, Blume KG, Chauncey TR, Little MT (2004) Kinetics of engraftment in patients with hematologic malignancies given allogeneic hematopoietic cell transplantation after nonmyeloablative conditioning. Blood 104(8):2254–2262. doi: 10.1182/blood-2004-04-1506, 2004-04-1506 [pii]PubMedCrossRefGoogle Scholar
  11. Barrett AJ, Le Blanc K (2008) Prophylaxis of acute GVHD: manipulate the graft or the environment? Best Pract Res Clin Haematol 21(2):165–176. doi: 10.1016/j.beha.2008.02.004, S1521-6926(08)00005-4 [pii]PubMedCrossRefGoogle Scholar
  12. Barrios M, Jimenez-Velasco A, Roman-Gomez J, Madrigal ME, Castillejo JA, Torres A, Heiniger A (2003) Chimerism status is a useful predictor of relapse after allogeneic stem cell transplantation for acute leukemia. Haematologica 88(7):801–810PubMedGoogle Scholar
  13. Bashey A, Owzar K, Johnson JL, Edwards PS, Kelly M, Baxter-Lowe LA, Devine S, Farag S, Hurd D, Ball E, McCarthy P, Lister J, Shea TC, Linker C (2010) Reduced-intensity conditioning allogeneic hematopoietic cell transplantation for patients with hematologic malignancies who relapse following autologous transplantation: a multi-institutional prospective study from the Cancer and Leukemia Group B (CALGB trial 100002). Biol Blood Marrow Transplant. doi:  10.1016/j.bbmt.2010.07.015, S1083-8791(10)00316-2 [pii]
  14. Berglund S, Okas M, Gertow J, Uhlin M, Mattsson J (2009) Stable mixed donor–donor chimerism after double cord blood transplantation. Int J Hematol 90(4):526–531. doi: 10.1007/s12185-009-0398-y, S1083-8791(10)00316-2 [pii]PubMedCrossRefGoogle Scholar
  15. Bornhauser M, Oelschlaegel U, Platzbecker U, Bug G, Lutterbeck K, Kiehl MG, Schetelig J, Kiani A, Illmer T, Schaich M, Theuser C, Mohr B, Brendel C, Fauser AA, Klein S, Martin H, Ehninger G, Thiede C (2009) Monitoring of donor chimerism in sorted CD34+ peripheral blood cells allows the sensitive detection of imminent relapse after allogeneic stem cell transplantation. Haematologica 94(11):1613–1617. doi: 10.3324/haematol.2009.007765, 94/11/1613 [pii]PubMedCrossRefGoogle Scholar
  16. Chen DP, Tseng CP, Wang WT, Wang MC, Tsai SH, Sun CF (2011) Real-time biallelic polymorphism-polymerase chain reaction for chimerism monitoring of hematopoietic stem cell transplantation relapsed patients. Clin Chim Acta 412(7–8):625–630. doi: 10.1016/j.cca.2010.12.018, S0009-8981(10)00769-2 [pii]PubMedCrossRefGoogle Scholar
  17. Childs R, Clave E, Contentin N, Jayasekera D, Hensel N, Leitman S, Read EJ, Carter C, Bahceci E, Young NS, Barrett AJ (1999) Engraftment kinetics after nonmyeloablative allogeneic peripheral blood stem cell transplantation: full donor T-cell chimerism precedes alloimmune responses. Blood 94(9):3234–3241PubMedGoogle Scholar
  18. Couriel DR, Saliba RM, Giralt S, Khouri I, Andersson B, de Lima M, Hosing C, Anderlini P, Donato M, Cleary K, Gajewski J, Neumann J, Ippoliti C, Rondon G, Cohen A, Champlin R (2004) Acute and chronic graft-versus-host disease after ablative and nonmyeloablative conditioning for allogeneic hematopoietic transplantation. Biol Blood Marrow Transplant 10(3):178–185. doi: 10.1016/j.bbmt.2003.10.006, S1083879103004191 [pii]PubMedCrossRefGoogle Scholar
  19. Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthes S, Gadner H, Lion T, Muller-Berat N (1999) Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders: implications for timely detection of engraftment, graft failure and rejection. Leukemia 13(12):2059, 2060Google Scholar
  20. Fakhrai-Rad H, Pourmand N, Ronaghi M (2002) Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat 19(5):479–485. doi: 10.1002/humu.10078 PubMedCrossRefGoogle Scholar
  21. Ford CE, Hamerton JL, Barnes DW, Loutit JF (1956) Cytological identification of radiation-chimaeras. Nature 177(4506):452–454PubMedCrossRefGoogle Scholar
  22. Formankova R, Sedlacek P, Krskova L, Rihova H, Sramkova L, Star J (2003) Chimerism-directed adoptive immunotherapy in prevention and treatment of post-transplant relapse of leukemia in childhood. Haematologica 88(1):117–118PubMedGoogle Scholar
  23. Fredriksson M, Barbany G, Liljedahl U, Hermanson M, Kataja M, Syvanen AC (2004) Assessing hematopoietic chimerism after allogeneic stem cell transplantation by multiplexed SNP genotyping using microarrays and quantitative analysis of SNP alleles. Leukemia 18(2):255–266. doi: 10.1038/sj.leu.2403213, 2403213 [pii]PubMedCrossRefGoogle Scholar
  24. Gardiner N, Lawler M, O’Riordan J, De’Arce M, McCann SR (1997) Donor chimaerism is a strong indicator of disease free survival following bone marrow transplantation for chronic myeloid leukaemia. Leukemia 11(Suppl 3):512–515PubMedGoogle Scholar
  25. Gonzalez-Vicent M, Perez A, Abad L, Sevilla J, Ramirez M, Diaz MA (2010) Graft manipulation and reduced-intensity conditioning for allogeneic hematopoietic stem cell transplantation from mismatched unrelated and mismatched/haploidentical related donors in pediatric leukemia patients. J Pediatr Hematol Oncol 32(3):e85–e90. doi: 10.1097/MPH.0b013e3181cf813c PubMedCrossRefGoogle Scholar
  26. Gorczynska E, Turkiewicz D, Toporski J, Kalwak K, Rybka B, Ryczan R, Sajewicz L, Chybicka A (2004) Prompt initiation of immunotherapy in children with an increasing number of autologous cells after allogeneic HCT can induce complete donor-type chimerism: a report of 14 children. Bone Marrow Transplant 33(2):211–217. doi: 10.1038/sj.bmt.1704321, 1704321 [pii]PubMedCrossRefGoogle Scholar
  27. Guimond M, Busque L, Baron C, Bonny Y, Belanger R, Mattioli J, Perreault C, Roy DC (2000) Relapse after bone marrow transplantation: evidence for distinct immunological mechanisms between adult and paediatric populations. Br J Haematol 109(1):130–137 bjh1961 [pii]PubMedCrossRefGoogle Scholar
  28. Guz K, Smolarczyk-Wodzyńska J, Dawidowska M, Jółkowska-Baraniak J, Orzinska A, Skulimowska J, Sawecka J, Kraszewska M, Tomaszewska A, Nasiłowska-Adamska B, Mariańska B, Wachowiak J, Witt M, Brojer E (2010) Evaluation of chimerism after allogeneic hematopoietic stem cell transplantation using the RQ-PCR method—its standardization and comparison with the STR-PCR method. Acta Haematol Pol 41(4):535–544Google Scholar
  29. Harries LW, Wickham CL, Evans JC, Rule SA, Joyner MV, Ellard S (2005) Analysis of haematopoietic chimaerism by quantitative real-time polymerase chain reaction. Bone Marrow Transplant 35(3):283–290. doi: 10.1038/sj.bmt.1704764, 1704764 [pii]PubMedCrossRefGoogle Scholar
  30. Hochberg EP, Miklos DB, Neuberg D, Eichner DA, McLaughlin SF, Mattes-Ritz A, Alyea EP, Antin JH, Soiffer RJ, Ritz J (2003) A novel rapid single nucleotide polymorphism (SNP)-based method for assessment of hematopoietic chimerism after allogeneic stem cell transplantation. Blood 101(1):363–369. doi: 10.1182/blood-2002-05-1365, 2002-05-1365 [pii]PubMedCrossRefGoogle Scholar
  31. Horky O, Mayer J, Kablaskova L, Razga F, Krejci M, Kissova J, Borsky M, Jeziskova I, Dvorakova D (2011) Increasing hematopoietic microchimerism is a reliable indicator of incipient AML relapse. Int J Lab Hematol 33(1):57–66. doi: 10.1111/j.1751-553X.2010.01249.x CLH1249 [pii]PubMedCrossRefGoogle Scholar
  32. Horn B, Soni S, Khan S, Petrovic A, Breslin N, Cowan M, Pelle-Day G, Cooperstein E, Baxter-Lowe LA (2009) Feasibility study of preemptive withdrawal of immunosuppression based on chimerism testing in children undergoing myeloablative allogeneic transplantation for hematologic malignancies. Bone Marrow Transplant 43(6):469–476. doi: 10.1038/bmt.2008.339 bmt2008339 [pii]PubMedCrossRefGoogle Scholar
  33. Jimenez-Velasco A, Barrios M, Roman-Gomez J, Navarro G, Buno I, Castillejo JA, Rodriguez AI, Garcia-Gemar G, Torres A, Heiniger AI (2005) Reliable quantification of hematopoietic chimerism after allogeneic transplantation for acute leukemia using amplification by real-time PCR of null alleles and insertion/deletion polymorphisms. Leukemia 19(3):336–343. doi: 10.1038/sj.leu.2403622 2403622 [pii]PubMedCrossRefGoogle Scholar
  34. Jółkowska J, Derwich K, Dawidowska M (2007) Methods of minimal residual disease (MRD) detection in childhood haematological malignancies. J Appl Genet 48(1):77–83PubMedCrossRefGoogle Scholar
  35. Jółkowska J, Pieczonka A, Strabel T, Boruczkowski D, Wachowiak J, Bader P, Witt M (2005) Hematopoietic chimerism after allogeneic stem cell transplantation: a comparison of quantitative analysis by automated DNA sizing and fluorescent in situ hybridization. BMC Blood Disord 5(1):1. doi: 10.1186/1471-2326-5-1 1471-2326-5-1 [pii]PubMedCrossRefGoogle Scholar
  36. Khan F, Agarwal A, Agrawal S (2004) Significance of chimerism in hematopoietic stem cell transplantation: new variations on an old theme. Bone Marrow Transplant 34(1):1–12. doi: 10.1038/sj.bmt.1704525 1704525 [pii]PubMedCrossRefGoogle Scholar
  37. Klingebiel T, Bader P (2008) Delayed lymphocyte infusion in children given SCT. Bone Marrow Transplant 41(Suppl 2):S23–S26. doi: 10.1038/bmt.2008.49 bmt200849 [pii]PubMedCrossRefGoogle Scholar
  38. Kolb HJ (2008) Graft-versus-leukemia effects of transplantation and donor lymphocytes. Blood 112(12):4371–4383. doi: 10.1182/blood-2008-03-077974 112/12/4371 [pii]PubMedCrossRefGoogle Scholar
  39. Koldehoff M, Steckel NK, Hlinka M, Beelen DW, Elmaagacli AH (2006) Quantitative analysis of chimerism after allogeneic stem cell transplantation by real-time polymerase chain reaction with single nucleotide polymorphisms, standard tandem repeats, and Y-chromosome-specific sequences. Am J Hematol 81(10):735–746. doi: 10.1002/ajh.20693 PubMedCrossRefGoogle Scholar
  40. Kroger N, Zagrivnaja M, Schwartz S, Badbaran A, Zabelina T, Lioznov M, Ayuk F, Zander A, Fehse B (2006) Kinetics of plasma-cell chimerism after allogeneic stem cell transplantation by highly sensitive real-time PCR based on sequence polymorphism and its value to quantify minimal residual disease in patients with multiple myeloma. Exp Hematol 34(5):688–694. doi: 10.1016/j.exphem.2006.01.011 S0301-472X(06)00056-7 [pii]PubMedCrossRefGoogle Scholar
  41. Lange T, Hubmann M, Burkhardt R, Franke GN, Cross M, Scholz M, Leiblein S, Al-Ali HK, Edelmann J, Thiery J, Niederwieser D (2010) Monitoring of WT1 expression in PB and CD34(+) donor chimerism of BM predicts early relapse in AML and MDS patients after hematopoietic cell transplantation with reduced-intensity conditioning. Leukemia. doi: 10.1038/leu.2010.283 leu2010283 [pii]
  42. Legler TJ, Lynen R, Maas JH, Pindur G, Kulenkampff D, Suren A, Osmers R, Kohler M (2002) Prediction of fetal Rh D and Rh CcEe phenotype from maternal plasma with real-time polymerase chain reaction. Transfus Apher Sci 27(3):217–223. S1473-0502(02)00068-X [pii]PubMedCrossRefGoogle Scholar
  43. Liesveld JL, Rothberg PG (2008) Mixed chimerism in SCT: conflict or peaceful coexistence? Bone Marrow Transplant 42(5):297–310. doi: 10.1038/bmt.2008.212 bmt2008212 [pii]PubMedCrossRefGoogle Scholar
  44. Lim ZY, Pearce L, Ingram W, Ho AY, Mufti GJ, Pagliuca A (2008) Chimerism does not predict for outcome after alemtuzumab-based conditioning: lineage-specific analysis of chimerism of specific diseases may be more informative. Bone Marrow Transplant 41(6):587–588. 1705937 [pii]PubMedCrossRefGoogle Scholar
  45. Lion T (2007) Detection of impending graft rejection and relapse by lineage-specific chimerism analysis. Methods Mol Med 134:197–216. 1-59745-223-8:197 [pii]PubMedCrossRefGoogle Scholar
  46. Lion T, Daxberger H, Dubovsky J, Filipcik P, Fritsch G, Printz D, Peters C, Matthes-Martin S, Lawitschka A, Gadner H (2001) Analysis of chimerism within specific leukocyte subsets for detection of residual or recurrent leukemia in pediatric patients after allogeneic stem cell transplantation. Leukemia 15(2):307–310PubMedCrossRefGoogle Scholar
  47. Lo YM, Lau TK, Chan LY, Leung TN, Chang AM (2000) Quantitative analysis of the bidirectional fetomaternal transfer of nucleated cells and plasma DNA. Clin Chem 46(9):1301–1309PubMedGoogle Scholar
  48. Maas F, Schaap N, Kolen S, Zoetbrood A, Buno I, Dolstra H, de Witte T, Schattenberg A, van de Wiel-van Kemenade E (2003) Quantification of donor and recipient hemopoietic cells by real-time PCR of single nucleotide polymorphisms. Leukemia 17(3):630–633. doi: 10.1038/sj.leu.2402857 PubMedCrossRefGoogle Scholar
  49. Mackinnon S, Barnett L, Heller G, O’Reilly RJ (1994) Minimal residual disease is more common in patients who have mixed T-cell chimerism after bone marrow transplantation for chronic myelogenous leukemia. Blood 83(11):3409–3416PubMedGoogle Scholar
  50. Martínez-López J, Crooke A, Grande S, Ayala R, Jiménez-Velasco A, Gamarra S, Meneu JC, Gilsanz F (2010) Real-time PCR quantification of haematopoietic chimerism after transplantation: a comparison between TaqMan and hybridization probes technologies. Int J Lab Hematol 32 (1 Ptq):e17–e25. doi: 10.1111/j.1751-553X.2009.01166.x
  51. Masmas TN, Madsen HO, Petersen SL, Ryder LP, Svejgaard A, Alizadeh M, Vindelov LL (2005) Evaluation and automation of hematopoietic chimerism analysis based on real-time quantitative polymerase chain reaction. Biol Blood Marrow Transplant 11(7):558–566. doi: 10.1016/j.bbmt.2005.04.004 S1083879105002600 [pii]PubMedCrossRefGoogle Scholar
  52. Mattsson J, Uzunel M, Tammik L, Aschan J, Ringden O (2001) Leukemia lineage-specific chimerism analysis is a sensitive predictor of relapse in patients with acute myeloid leukemia and myelodysplastic syndrome after allogeneic stem cell transplantation. Leukemia 15(12):1976–1985PubMedCrossRefGoogle Scholar
  53. Maury S, Jouault H, Kuentz M, Vernant JP, Tulliez M, Cordonnier C, Bories D (2001) Chimerism analysis by lineage-specific fluorescent polymerase chain reaction in secondary graft failure after allogeneic stem cell transplantation. Transplantation 71(3):374–380PubMedCrossRefGoogle Scholar
  54. McCann SR, Crampe M, Molloy K, Lawler M (2005) Hemopoietic chimerism following stem cell transplantation. Transfus Apher Sci 32(1):55–61. doi: 10.1016/j.transci.2004.10.006 S1473-0502(04)00182-X [pii]PubMedCrossRefGoogle Scholar
  55. McCann SR, Lawler M (2004) Monitoring outcome: MRD, chimearism and relapse. In: Carreras E, Gluckman E, Gratwohl A, Masszi T, Apperlay J (eds) Haematopoietic stem cell transplantation. Forum Service Editore, Genoa, pp 197–212Google Scholar
  56. Mielcarek M, Storb R (2003) Non-myeloablative hematopoietic cell transplantation as immunotherapy for hematologic malignancies. Cancer Treat Rev 29(4):283–290. S0305737203000045 [pii]PubMedCrossRefGoogle Scholar
  57. Miura Y, Tanaka J, Toubai T, Tsutsumi Y, Kato N, Hirate D, Kaji M, Sugita J, Shigematsu A, Iwao N, Ota S, Masauzi N, Fukuhara T, Kasai M, Asaka M, Imamura M (2006) Analysis of donor-type chimerism in lineage-specific cell populations after allogeneic myeloablative and non-myeloablative stem cell transplantation. Bone Marrow Transplant 37(9):837–843. doi: 10.1038/sj.bmt.1705352 1705352 [pii]PubMedCrossRefGoogle Scholar
  58. Perez-Simon JA, Caballero D, Diez-Campelo M, Lopez-Perez R, Mateos G, Canizo C, Vazquez L, Vidriales B, Mateos MV, Gonzalez M, San Miguel JF (2002) Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC) allogeneic transplantation. Leukemia 16(8):1423–1431PubMedCrossRefGoogle Scholar
  59. Ramirez M, Diaz MA, Garcia-Sanchez F, Velasco M, Casado F, Villa M, Vicario JL, Madero L (1996) Chimerism after allogeneic hematopoietic cell transplantation in childhood acute lymphoblastic leukemia. Bone Marrow Transplant 18(6):1161–1165PubMedGoogle Scholar
  60. Sairafi D, Remberger M, Uhlin M, Ljungman P, Ringden O, Mattsson J (2010) Leukemia lineage-specific chimerism analysis and molecular monitoring improve outcome of donor lymphocyte infusions. Biol Blood Marrow Transplant 16(12):1728–1737. doi: 10.1016/j.bbmt.2010.06.005 S1083-8791(10)00246-6 [pii]PubMedCrossRefGoogle Scholar
  61. Schilham MW, Balduzzi A, Bader P (2005) Is there a role for minimal residual disease levels in the treatment of ALL patients who receive allogeneic stem cells? Bone Marrow Transplant 35(Suppl 1):S49–S52PubMedCrossRefGoogle Scholar
  62. Schraml E, Lion T (2003) Interference of dye-associated fluorescence signals with quantitative analysis of chimerism by capillary electrophoresis. Leukemia 17(1):221–223. doi: 10.1038/sj.leu.2402755 PubMedCrossRefGoogle Scholar
  63. Serrano J, Roman J, Sanchez J, Jimenez A, Castillejo JA, Herrera C, Gonzalez MG, Reina L, Rodriguez MC, Alvarez MA, Maldonado J, Torres A (2000) Molecular analysis of lineage-specific chimerism and minimal residual disease by RT-PCR of p210(BCR-ABL) and p190(BCR-ABL) after allogeneic bone marrow transplantation for chronic myeloid leukemia: increasing mixed myeloid chimerism and p190(BCR-ABL) detection precede cytogenetic relapse. Blood 95(8):2659–2665PubMedGoogle Scholar
  64. Stumph J, Vnencak-Jones CL, Koyama T, Frangoul H (2008) Comparison of peripheral blood and bone marrow samples for detection of post transplant mixed chimerism. Bone Marrow Transplant 41(6):589–590PubMedCrossRefGoogle Scholar
  65. Syvanen AC (1999) From gels to chips: “minisequencing” primer extension for analysis of point mutations and single nucleotide polymorphisms. Hum Mutat 13(1):1–10PubMedCrossRefGoogle Scholar
  66. Thiede C, Bornhauser M, Ehninger G (2004) Strategies and clinical implications of chimerism diagnostics after allogeneic hematopoietic stem cell transplantation. Acta Haematol 112(1–2):16–23. doi: 10.1159/000077555 AHA20041121_2016 [pii]PubMedCrossRefGoogle Scholar
  67. Thiede C, Bornhauser M, Oelschlagel U, Brendel C, Leo R, Daxberger H, Mohr B, Florek M, Kroschinsky F, Geissler G, Naumann R, Ritter M, Prange-Krex G, Lion T, Neubauer A, Ehninger G (2001) Sequential monitoring of chimerism and detection of minimal residual disease after allogeneic blood stem cell transplantation (BSCT) using multiplex PCR amplification of short tandem repeat-markers. Leukemia 15(2):293–302PubMedCrossRefGoogle Scholar
  68. Thiede C, Florek M, Bornhauser M, Ritter M, Mohr B, Brendel C, Ehninger G, Neubauer A (1999) Rapid quantification of mixed chimerism using multiplex amplification of short tandem repeat markers and fluorescence detection. Bone Marrow Transplant 23(10):1055–1060. doi: 10.1038/sj.bmt.1701779 PubMedCrossRefGoogle Scholar
  69. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ (2003) Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17(6):1013–1034PubMedCrossRefGoogle Scholar
  70. van Leeuwen JE, van Tol MJ, Joosten AM, Wijnen JT, Khan PM, Vossen JM (1993) Mixed T-lymphoid chimerism after allogeneic bone marrow transplantation for hematologic malignancies of children is not correlated with relapse. Blood 82(6):1921–1928PubMedGoogle Scholar
  71. Vignal A, Milan D, SanCristobal M, Eggen A (2002) A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34(3):275–305. doi: 10.1051/gse:2002009 PubMedCrossRefGoogle Scholar
  72. Wiedemann B, Klyuchnikov E, Kroger N, Zabelina T, Stahl T, Zeschke S, Badbaran A, Ayuk F, Alchalby H, Wolschke C, Bokemeyer C, Fehse B, Zander AR, Bacher U (2010) Chimerism studies with quantitative real-time PCR in stem cell recipients with acute myeloid leukemia. Exp Hematol 38(12):1261–1271. doi: 10.1016/j.exphem.2010.08.006 S0301-472X(10)00370-X [pii]PubMedCrossRefGoogle Scholar
  73. Willasch A, Eing S, Weber G, Kuci S, Schneider G, Soerensen J, Jarisch A, Rettinger E, Koehl U, Klingebiel T, Kreyenberg H, Bader P (2010) Enrichment of cell subpopulations applying automated MACS technique: purity, recovery and applicability for PCR-based chimerism analysis. Bone Marrow Transplant 45(1):181–189. doi: 10.1038/bmt.2009.89 bmt200989 [pii]PubMedCrossRefGoogle Scholar
  74. Willasch A, Schneider G, Reincke BS, Shayegi N, Kreyenberg H, Kuci S, Weber G, Van Der Reijden B, Niethammer D, Klingebiel T, Bader P (2007) Sequence polymorphism systems for quantitative real-time polymerase chain reaction to characterize hematopoietic chimerism-high informativity and sensitivity as well as excellent reproducibility and precision of measurement. Lab Hematol 13(3):73–84. doi: 10.1532/LH96.07004 37054778R8633G01 [pii]PubMedCrossRefGoogle Scholar
  75. Winiarski J, Gustafsson A, Wester D, Dalianis T (2000) Follow-up of chimerism, including T- and B-lymphocytes and granulocytes in children more than one year after allogeneic bone marrow transplantation. Pediatr Transplant 4(2):132–139PubMedCrossRefGoogle Scholar
  76. Wu CJ, Hochberg EP, Rogers SA, Kutok JL, Biernacki M, Nascimento AF, Marks P, Bridges K, Ritz J (2003) Molecular assessment of erythroid lineage chimerism following nonmyeloablative allogeneic stem cell transplantation. Exp Hematol 31(10):924–933. S0301472X03002273 [pii]PubMedCrossRefGoogle Scholar
  77. Zeiser R, Spyridonidis A, Wasch R, Ihorst G, Grullich C, Bertz H, Finke J (2005) Evaluation of immunomodulatory treatment based on conventional and lineage-specific chimerism analysis in patients with myeloid malignancies after myeloablative allogeneic hematopoietic cell transplantation. Leukemia 19(5):814–821. doi: 10.1038/sj.leu.2403719 2403719 [pii]PubMedCrossRefGoogle Scholar
  78. Zetterquist H, Mattsson J, Uzunel M, Nasman-Bjork I, Svenberg P, Tammik L, Bayat G, Winiarski J, Ringden O (2000) Mixed chimerism in the B cell lineage is a rapid and sensitive indicator of minimal residual disease in bone marrow transplant recipients with pre-B cell acute lymphoblastic leukemia. Bone Marrow Transplant 25(8):843–851. doi: 10.1038/sj.bmt.1702337 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Małgorzata Dawidowska
    • 1
  • Katarzyna Guz
    • 2
  • Ewa Brojer
    • 2
  • Jacek Wachowiak
    • 3
  • Michał Witt
    • 4
    • 1
  1. 1.Department of Molecular and Clinical GeneticsInstitute of Human Genetics, Polish Academy of SciencesPoznańPoland
  2. 2.Department of Immunohematology and Immunology of Transfusion MedicineInstitute of Hematology and Transfusion MedicineWarsawPoland
  3. 3.Department of Pediatric Oncology, Hematology and TransplantologyPoznań University of Medical SciencesPoznań Poland
  4. 4.International Institute of Molecular and Cell BiologyWarsawPoland

Personalised recommendations