Molecular Biology of Acute Lymphoblastic Leukemia

  • Małgorzata Dawidowska
  • Monika D. Kraszewska
  • Katarzyna Derwich
  • Tomasz Szczepański
Part of the Principles and Practice book series (PRINCIPLES)


Acute lymphoblastic leukemia (ALL) is the most common but also the most successfully treated malignancy in children. Current cure rates of approximately 85 % have been reached through multi-agent therapeutic regimens and particularly through risk-stratification enabling therapy individualization. Nevertheless, relapse is still the main cause of treatment failure. Therefore, the main effort is now focused on improving the outcome of high risk ALL subtypes, i.e., Ph + ALL, infant ALL, ALL with MLL gene rearrangements, hypodiploid ALL, some T-ALL subsets, recurrent and refractory leukemia. Recent research using advanced molecular techniques, in particular microarray-based genomic gene expression profiling (GEP) and high resolution single nucleotide polymorphism (SNP) microarray approaches, resulted in the identification of novel genetic factors with a potential impact on ALL classification and treatment. The main goal is now to translate these findings on ALL blast biology and those on pharmacogenetics of patient response to therapy into improved diagnostics, prognostic classification, and treatment of this malignancy.


Acute Lymphoblastic Leukemia Minimal Residual Disease Gene Rearrangement Nijmegen Breakage Syndrome Prognostic Classification 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This chapter was partly supported by the Ministry of Science and Higher Education, grant N N407 311 839.


  1. Aifantis I, Raetz E, Buonamici S (2008) Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat Rev Immunol 8(5):380–390. doi: 10.1038/nri2304 PubMedCrossRefGoogle Scholar
  2. Asnafi V, Buzyn A, Le Noir S, Baleydier F, Simon A, Beldjord K, Reman O, Witz F, Fagot T, Tavernier E, Turlure P, Leguay T, Huguet F, Vernant JP, Daniel F, Bene MC, Ifrah N, Thomas X, Dombret H, Macintyre E (2009) NOTCH1/FBXW7 mutation identifies a large subgroup with favorable outcome in adult T-cell acute lymphoblastic leukemia (T-ALL): a Group for research on adult acute lymphoblastic leukemia (GRAALL) study. Blood 113(17):3918–3924. doi: 10.1182/blood-2008-10-184069 PubMedCrossRefGoogle Scholar
  3. Bardini M, Spinelli R, Bungaro S, Mangano E, Corral L, Cifola I, Fazio G, Giordan M, Basso G, De Rossi G, Biondi A, Battaglia C, Cazzaniga G (2010) DNA copy-number abnormalities do not occur in infant ALL with t(4;11)/MLL-AF4. Leukemia 24(1):169–176. doi: 10.1038/leu.2009.203 PubMedCrossRefGoogle Scholar
  4. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A, van’t Veer MB (1995) Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leuk: Off J Leuk Soc Am Leuk Res Fund UK 9(10):1783–1786Google Scholar
  5. Benedikt A, Baltruschat S, Scholz B, Bursen A, Arrey TN, Meyer B, Varagnolo L, Muller AM, Karas M, Dingermann T, Marschalek R (2011) The leukemogenic AF4-MLL fusion protein causes P-TEFb kinase activation and altered epigenetic signatures. Leukemia 25(1):135–144. doi: 10.1038/leu.2010.249 PubMedCrossRefGoogle Scholar
  6. Breit TM, Wolvers-Tettero IL, Beishuizen A, Verhoeven MA, van Wering ER, van Dongen JJ (1993) Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood 82(10):3063–3074PubMedGoogle Scholar
  7. Cario G, Stanulla M, Fine BM, Teuffel O, Neuhoff NV, Schrauder A, Flohr T, Schafer BW, Bartram CR, Welte K, Schlegelberger B, Schrappe M (2005) Distinct gene expression profiles determine molecular treatment response in childhood acute lymphoblastic leukemia. Blood 105(2):821–826. doi: 10.1182/blood-2004-04-1552 PubMedCrossRefGoogle Scholar
  8. Cario G, Zimmermann M, Romey R, Gesk S, Vater I, Harbott J, Schrauder A, Moericke A, Izraeli S, Akasaka T, Dyer MJ, Siebert R, Schrappe M, Stanulla M (2010) Presence of the P2RY8-CRLF2 rearrangement is associated with a poor prognosis in non-high-risk precursor B-cell acute lymphoblastic leukemia in children treated according to the ALL-BFM 2000 protocol. Blood 115(26):5393–5397. doi: 10.1182/blood-2009-11-256131 PubMedCrossRefGoogle Scholar
  9. Cauwelier B, Dastugue N, Cools J, Poppe B, Herens C, De Paepe A, Hagemeijer A, Speleman F (2006) Molecular cytogenetic study of 126 unselected T-ALL cases reveals high incidence of TCRbeta locus rearrangements and putative new T-cell oncogenes. Leukemia 20(7):1238–1244. doi: 10.1038/sj.leu.2404243 PubMedCrossRefGoogle Scholar
  10. Clappier E, Collette S, Grardel N, Girard S, Suarez L, Brunie G, Kaltenbach S, Yakouben K, Mazingue F, Robert A, Boutard P, Plantaz D, Rohrlich P, van Vlierberghe P, Preudhomme C, Otten J, Speleman F, Dastugue N, Suciu S, Benoit Y, Bertrand Y, Cave H (2010) NOTCH1 and FBXW7 mutations have a favorable impact on early response to treatment, but not on outcome, in children with T-cell acute lymphoblastic leukemia (T-ALL) treated on EORTC trials 58881 and 58951. Leukemia. doi: 10.1038/leu.2010.205
  11. Coustan-Smith E, Mullighan CG, Onciu M, Behm FG, Raimondi SC, Pei D, Cheng C, Su X, Rubnitz JE, Basso G, Biondi A, Pui CH, Downing JR, Campana D (2009) Early T-cell precursor leukaemia: a subtype of very high-risk acute lymphoblastic leukaemia. Lancet Oncol 10(2):147–156. doi: 10.1016/S1470-2045(08)70314-0 PubMedCrossRefGoogle Scholar
  12. Dawidowska M, Derwich K, Szczepanski T, Jolkowska J, van der Velden VH, Wachowiak J, Witt M (2006) Pattern of immunoglobulin and T-cell receptor (Ig/TCR) gene rearrangements in Polish pediatric acute lymphoblastic leukemia patients–implications for RQ-PCR-based assessment of minimal residual disease. Leuk Res 30(9):1119–1125PubMedCrossRefGoogle Scholar
  13. Dawidowska M, Jolkowska J, Szczepanski T, Derwich K, Wachowiak J, Witt M (2008) Implementation of the standard strategy for identification of Ig/TCR targets for minimal residual disease diagnostics in B-cell precursor ALL pediatric patients: Polish experience. Arch Immunol Ther Exp (Warsz) 56(6):409–418. doi: 10.1007/s00005-008-0045-y CrossRefGoogle Scholar
  14. De Braekeleer E, Douet-Guilbert N, Rowe D, Bown N, Morel F, Berthou C, Ferec C, De Braekeleer M (2011) ABL1 fusion genes in hematological malignancies: a review. Eur J Haematol 86(5):361–371. doi: 10.1111/j.1600-0609.2011.01586.x PubMedCrossRefGoogle Scholar
  15. Demarest RM, Ratti F, Capobianco AJ (2008) It’s T-ALL about Notch. Oncogene 27(38):5082–5091. doi: 10.1038/onc.2008.222 PubMedCrossRefGoogle Scholar
  16. Dik WA, Brahim W, Braun C, Asnafi V, Dastugue N, Bernard OA, van Dongen JJ, Langerak AW, Macintyre EA, Delabesse E (2005) CALM-AF10 + T-ALL expression profiles are characterized by overexpression of HOXA and BMI1 oncogenes. Leukemia 19(11):1948–1957. doi: 10.1038/sj.leu.2403891 PubMedCrossRefGoogle Scholar
  17. Familiades J, Bousquet M, Lafage-Pochitaloff M, Bene MC, Beldjord K, De Vos J, Dastugue N, Coyaud E, Struski S, Quelen C, Prade-Houdellier N, Dobbelstein S, Cayuela JM, Soulier J, Grardel N, Preudhomme C, Cave H, Blanchet O, Lheritier V, Delannoy A, Chalandon Y, Ifrah N, Pigneux A, Brousset P, Macintyre EA, Huguet F, Dombret H, Broccardo C, Delabesse E (2009) PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia 23(11):1989–1998. doi: 10.1038/leu.2009.135 PubMedCrossRefGoogle Scholar
  18. Ferrando AA, Neuberg DS, Staunton J, Loh ML, Huard C, Raimondi SC, Behm FG, Pui CH, Downing JR, Gilliland DG, Lander ES, Golub TR, Look AT (2002) Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1(1):75–87 S1535610802000181 [pii]PubMedCrossRefGoogle Scholar
  19. Flohr T, Schrauder A, Cazzaniga G, Panzer-Grumayer R, van der Velden V, Fischer S, Stanulla M, Basso G, Niggli FK, Schafer BW, Sutton R, Koehler R, Zimmermann M, Valsecchi MG, Gadner H, Masera G, Schrappe M, van Dongen JJ, Biondi A, Bartram CR (2008) Minimal residual disease-directed risk stratification using real-time quantitative PCR analysis of immunoglobulin and T-cell receptor gene rearrangements in the international multicenter trial AIEOP-BFM ALL 2000 for childhood acute lymphoblastic leukemia. LeukemiaGoogle Scholar
  20. Flotho C, Coustan-Smith E, Pei D, Cheng C, Song G, Pui CH, Downing JR, Campana D (2007) A set of genes that regulate cell proliferation predicts treatment outcome in childhood acute lymphoblastic leukemia. Blood 110(4):1271–1277. doi: 10.1182/blood-2007-01-068478 PubMedCrossRefGoogle Scholar
  21. Ford AM, Fasching K, Panzer-Grumayer ER, Koenig M, Haas OA, Greaves MF (2001) Origins of “late” relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood 98(3):558–564PubMedCrossRefGoogle Scholar
  22. Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC, Greaves M (1993) In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 363(6427):358–360. doi: 10.1038/363358a0 PubMedCrossRefGoogle Scholar
  23. Gandemer V, Rio AG, de Tayrac M, Sibut V, Mottier S, Ly Sunnaram B, Henry C, Monnier A, Berthou C, Le Gall E, Le Treut A, Schmitt C, Le Gall JY, Mosser J, Galibert MD (2007) Five distinct biological processes and 14 differentially expressed genes characterize TEL/AML1-positive leukemia. BMC Genomics 8:385. doi: 10.1186/1471-2164-8-385 PubMedCrossRefGoogle Scholar
  24. Greaves M (1999) Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer 35(14):1941–1953 S0959-8049(99)00296-8 [pii]PubMedCrossRefGoogle Scholar
  25. Greaves M (2006) Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 6(3):193–203. doi: 10.1038/nrc1816 PubMedCrossRefGoogle Scholar
  26. Greaves MF, Wiemels J (2003) Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 3(9):639–649. doi: 10.1038/nrc1164 PubMedCrossRefGoogle Scholar
  27. Houlston RS (2010) Low-penetrance susceptibility to hematological malignancy. Curr Opin Genet Dev 20(3):245–250. doi: 10.1016/j.gde.2010.03.004 PubMedCrossRefGoogle Scholar
  28. Hunger SP, Raetz EA, Loh ML, Mullighan CG (2011) Improving outcomes for high-risk ALL: translating new discoveries into clinical care. Pediatr Blood Cancer 56(6):984–993. doi: 10.1002/pbc.22996 PubMedCrossRefGoogle Scholar
  29. Iacobucci I, Lonetti A, Paoloni F, Papayannidis C, Ferrari A, Storlazzi CT, Vignetti M, Cilloni D, Messa F, Guadagnuolo V, Paolini S, Elia L, Messina M, Vitale A, Meloni G, Soverini S, Pane F, Baccarani M, Foa R, Martinelli G (2010) The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A rep behalf GIMEMA Acute Leuk Work Party. Haematol 95(10):1683–1690. doi: 10.3324/haematol.2009.020792 Google Scholar
  30. Jansen MW, Corral L, van der Velden VH, Panzer-Grumayer R, Schrappe M, Schrauder A, Marschalek R, Meyer C, den Boer ML, Hop WJ, Valsecchi MG, Basso G, Biondi A, Pieters R, van Dongen JJ (2007) Immunobiological diversity in infant acute lymphoblastic leukemia is related to the occurrence and type of MLL gene rearrangement. Leukemia 21(4):633–641PubMedGoogle Scholar
  31. Kaatsch P (2010) Epidemiology of childhood cancer. Cancer Treat Rev 36(4):277–285. doi: 10.1016/j.ctrv.2010.02.003 PubMedCrossRefGoogle Scholar
  32. Kang H, Chen IM, Wilson CS, Bedrick EJ, Harvey RC, Atlas SR, Devidas M, Mullighan CG, Wang X, Murphy M, Ar K, Wharton W, Borowitz MJ, Bowman WP, Bhojwani D, Carroll WL, Camitta BM, Reaman GH, Smith MA, Downing JR, Hunger SP, Willman CL (2010) Gene expression classifiers for relapse-free survival and minimal residual disease improve risk classification and outcome prediction in pediatric B-precursor acute lymphoblastic leukemia. Blood 115(7):1394–1405. doi: 10.1182/blood-2009-05-218560 PubMedCrossRefGoogle Scholar
  33. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823PubMedCrossRefGoogle Scholar
  34. Konrad M, Metzler M, Panzer S, Ostreicher I, Peham M, Repp R, Haas OA, Gadner H, Panzer-Grumayer ER (2003) Late relapses evolve from slow-responding subclones in t(12;21)-positive acute lymphoblastic leukemia: evidence for the persistence of a preleukemic clone. Blood 101(9):3635–3640. doi: 10.1182/blood-2002-10-3252 PubMedCrossRefGoogle Scholar
  35. Kraszewska MD, Dawidowska M, Kosmalska M, Sedek L, Grzeszczak W, Szczepanski T, Witt M (2012a) Immunoglobulin/T-cell receptor gene rearrangements in the diagnostic paradigm of pediatric T-cell acute lymphoblastic leukemia patients. Leuk Lymphoma. doi: 10.3109/10428194.2011.654338 PubMedGoogle Scholar
  36. Kraszewska MD, Dawidowska M, Larmonie NS, Kosmalska M, Sedek L, Szczepaniak M, Grzeszczak W, Langerak AW, Szczepanski T, Witt M (2011) DNA methylation pattern is altered in childhood T-cell acute lymphoblastic leukemia patients as compared with normal thymic subsets: insights into CpG island methylator phenotype in T-ALL. Leukemia. doi: 10.1038/leu.2011.208
  37. Kraszewska MD, Dawidowska M, Szczepanski T, Witt M (2012b) T-cell acute lymphoblastic leukaemia: recent molecular biology findings. Br J Haematol 156(3):303–315. doi: 10.1111/j.1365-2141.2011.08957.x PubMedCrossRefGoogle Scholar
  38. Langerak AW, Wolvers-Tettero IL, van den Beemd MW, van Wering ER, Ludwig WD, Hahlen K, Necker A, van Dongen JJ (1999) Immunophenotypic and immunogenotypic characteristics of TCRgammadelta + T cell acute lymphoblastic leukemia. Leukemia 13(2):206–214PubMedCrossRefGoogle Scholar
  39. Liedtke M (2010) MLL. Homo sapiens myeloid/lymphoid or mixed-lineage leukemia (trithorax homolog, Drosophila)Google Scholar
  40. Malyukova A, Dohda T, von der Lehr N, Akhoondi S, Corcoran M, Heyman M, Spruck C, Grander D, Lendahl U, Sangfelt O (2007) The tumor suppressor gene hCDC4 is frequently mutated in human T-cell acute lymphoblastic leukemia with functional consequences for Notch signaling. Cancer Res 67(12):5611–5616. doi: 10.1158/0008-5472.CAN-06-4381 PubMedCrossRefGoogle Scholar
  41. Martinelli G, Iacobucci I, Storlazzi CT, Vignetti M, Paoloni F, Cilloni D, Soverini S, Vitale A, Chiaretti S, Cimino G, Papayannidis C, Paolini S, Elia L, Fazi P, Meloni G, Amadori S, Saglio G, Pane F, Baccarani M, Foa R (2009) IKZF1 (Ikaros) deletions in BCR-ABL1-positive acute lymphoblastic leukemia are associated with short disease-free survival and high rate of cumulative incidence of relapse: a GIMEMA AL WP report. J Clin Oncol 27(31):5202–5207. doi: 10.1200/JCO.2008.21.6408 PubMedCrossRefGoogle Scholar
  42. Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K, Mashimo Y, Oguro H, Nitta E, Ito K, Miyamoto K, Yoshiwara H, Hosokawa K, Nakamura Y, Gomei Y, Iwasaki H, Hayashi Y, Matsuzaki Y, Nakayama K, Ikeda Y, Hata A, Chiba S, Nakayama KI, Suda T (2008) Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev 22(8):986–991. doi: 10.1101/gad.1621808 PubMedCrossRefGoogle Scholar
  43. Meyer C, Kowarz E, Hofmann J, Renneville A, Zuna J, Trka J, Ben Abdelali R, Macintyre E, De Braekeleer E, De Braekeleer M, Delabesse E, de Oliveira MP, Cave H, Clappier E, van Dongen JJ, Balgobind BV, van den Heuvel-Eibrink MM, Beverloo HB, Panzer-Grumayer R, Teigler-Schlegel A, Harbott J, Kjeldsen E, Schnittger S, Koehl U, Gruhn B, Heidenreich O, Chan LC, Yip SF, Krzywinski M, Eckert C, Moricke A, Schrappe M, Alonso CN, Schafer BW, Krauter J, Lee DA, Zur Stadt U, Te Kronnie G, Sutton R, Izraeli S, Trakhtenbrot L, Lo Nigro L, Tsaur G, Fechina L, Szczepanski T, Strehl S, Ilencikova D, Molkentin M, Burmeister T, Dingermann T, Klingebiel T, Marschalek R (2009) New insights to the MLL recombinome of acute leukemias. Leukemia 23(8):1490–1499. doi: 10.1038/leu.2009.33 PubMedCrossRefGoogle Scholar
  44. Milano J, McKay J, Dagenais C, Foster-Brown L, Pognan F, Gadient R, Jacobs RT, Zacco A, Greenberg B, Ciaccio PJ (2004) Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cell metaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82(1):341–358. doi: 10.1093/toxsci/kfh254 PubMedCrossRefGoogle Scholar
  45. Mullighan CG (2009) Genomic analysis of acute leukemia. Int J Lab Hematol 31(4):384–397. doi: 10.1111/j.1751-553X.2009.01167.x PubMedCrossRefGoogle Scholar
  46. Mullighan CG (2010) Genetic variation and the risk of acute lymphoblastic leukemia. Leuk Res 34(10):1269–1270. doi: 10.1016/j.leukres.2010.05.013 PubMedCrossRefGoogle Scholar
  47. Mullighan CG, Downing JR (2009a) Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia 23(7):1209–1218. doi: 10.1038/leu.2009.18 PubMedCrossRefGoogle Scholar
  48. Mullighan CG, Downing JR (2009b) Global genomic characterization of acute lymphoblastic leukemia. Semin Hematol 46(1):3–15. doi: 10.1053/j.seminhematol.2008.09.005 PubMedCrossRefGoogle Scholar
  49. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA, Harvey RC, Chen IM, Clifford RJ, Carroll WL, Reaman G, Bowman WP, Devidas M, Gerhard DS, Yang W, Relling MV, Shurtleff SA, Campana D, Borowitz MJ, Pui CH, Smith M, Hunger SP, Willman CL, Downing JR (2009a) Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 360(5):470–480. doi: 10.1056/NEJMoa0808253 PubMedCrossRefGoogle Scholar
  50. Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA, Tasian SK, Loh ML, Su X, Liu W, Devidas M, Atlas SR, Chen IM, Clifford RJ, Gerhard DS, Carroll WL, Reaman GH, Smith M, Downing JR, Hunger SP, Willman CL (2009b) JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 106(23):9414–9418. doi: 10.1073/pnas.0811761106 PubMedCrossRefGoogle Scholar
  51. Nachman JB, Heerema NA, Sather H, Camitta B, Forestier E, Harrison CJ, Dastugue N, Schrappe M, Pui CH, Basso G, Silverman LB, Janka-Schaub GE (2007) Outcome of treatment in children with hypodiploid acute lymphoblastic leukemia. Blood 110(4):1112–1115. doi: 10.1182/blood-2006-07-038299 PubMedCrossRefGoogle Scholar
  52. O’Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, Draetta G, Sears R, Clurman BE, Look AT (2007) FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to gamma-secretase inhibitors. J Exp Med 204(8):1813–1824. doi: 10.1084/jem.20070876 PubMedCrossRefGoogle Scholar
  53. Pastorczak A, Gorniak P, Sherborne A, Hosking F, Trelinska J, Lejman M, Szczepanski T, Borowiec M, Fendler W, Kowalczyk J, Houlston RS, Mlynarski W (2011) Role of 657del5 NBN mutation and 7p12.2 (IKZF1), 9p21 (CDKN2A), 10q21.2 (ARID5B) and 14q11.2 (CEBPE) variation and risk of childhood ALL in the Polish population. Le. Leuk Res 35(11):1534–1536. doi: 10.1016/j.leukres.2011.07.034 PubMedCrossRefGoogle Scholar
  54. Piccaluga PP, Paolini S, Martinelli G (2007) Tyrosine kinase inhibitors for the treatment of Philadelphia chromosome-positive adult acute lymphoblastic leukemia. Cancer 110(6):1178–1186. doi: 10.1002/cncr.22881 PubMedCrossRefGoogle Scholar
  55. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M, Hovi L, LeBlanc T, Szczepanski T, Ferster A, Janka G, Rubnitz J, Silverman L, Stary J, Campbell M, Li CK, Mann G, Suppiah R, Biondi A, Vora A, Valsecchi MG (2007) A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 370(9583):240–250. doi: 10.1016/S0140-6736(07)61126-X PubMedCrossRefGoogle Scholar
  56. Pongers-Willemse MJ, Seriu T, Stolz F, d’Aniello E, Gameiro P, Pisa P, Gonzalez M, Bartram CR, Panzer-Grumayer ER, Biondi A, San Miguel JF, van Dongen JJ (1999) Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 13(1):110–118PubMedCrossRefGoogle Scholar
  57. Prasad RB, Hosking FJ, Vijayakrishnan J, Papaemmanuil E, Koehler R, Greaves M, Sheridan E, Gast A, Kinsey SE, Lightfoot T, Roman E, Taylor M, Pritchard-Jones K, Stanulla M, Schrappe M, Bartram CR, Houlston RS, Kumar R, Hemminki K (2010) Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood 115(9):1765–1767. doi: 10.1182/blood-2009-09-241513 Google Scholar
  58. Pui CH (2010) Recent research advances in childhood acute lymphoblastic leukemia. J Formos Med Assoc 109(11):777–787. doi: 10.1016/S0929-6646(10)60123-4 PubMedCrossRefGoogle Scholar
  59. Pui CH, Carroll WL, Meshinchi S, Arceci RJ (2011) Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 29(5):551–565. doi: 10.1200/JCO.2010.30.7405 PubMedCrossRefGoogle Scholar
  60. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W, Silverman LB, Biondi A, Harms DO, Vilmer E, Schrappe M, Camitta B (2002) Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 359(9321):1909–1915. doi: 10.1016/S0140-6736(02)08782-2 PubMedCrossRefGoogle Scholar
  61. Pui CH, Jeha S (2007) New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 6(2):149–165. doi: 10.1038/nrd2240 PubMedCrossRefGoogle Scholar
  62. Real PJ, Tosello V, Palomero T, Castillo M, Hernando E, de Stanchina E, Sulis ML, Barnes K, Sawai C, Homminga I, Meijerink J, Aifantis I, Basso G, Cordon-Cardo C, Ai W, Ferrando A (2009) Gamma-secretase inhibitors reverse glucocorticoid resistance in T cell acute lymphoblastic leukemia. Nat Med 15(1):50–58. doi: 10.1038/nm.1900 PubMedCrossRefGoogle Scholar
  63. Roman-Gomez J, Jimenez-Velasco A, Agirre X, Prosper F, Heiniger A, Torres A (2005) Lack of CpG island methylator phenotype defines a clinical subtype of T-cell acute lymphoblastic leukemia associated with good prognosis. J Clin Oncol 23(28):7043–7049. doi: 10.1200/JCO.2005.01.4944 PubMedCrossRefGoogle Scholar
  64. Roman-Gomez J, Jimenez-Velasco A, Castillejo JA, Agirre X, Barrios M, Navarro G, Molina FJ, Calasanz MJ, Prosper F, Heiniger A, Torres A (2004) Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood 104(8):2492–2498. doi: 10.1182/blood-2004-03-0954 PubMedCrossRefGoogle Scholar
  65. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK, Liu HC, Mahfouz R, Raimondi SC, Lenny N, Patel A, Downing JR (2003) Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 102(8):2951–2959. doi: 10.1182/blood-2003-01-0338 PubMedCrossRefGoogle Scholar
  66. Schafer E, Irizarry R, Negi S, McIntyre E, Small D, Figueroa ME, Melnick A, Brown P (2010) Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 115(23):4798–4809. doi: 10.1182/blood-2009-09-243634 PubMedCrossRefGoogle Scholar
  67. Schlissel MS (2003) Regulating antigen-receptor gene assembly. Nat Rev Immunol 3(11):890–899. doi: 10.1038/nri1225nri1225 PubMedCrossRefGoogle Scholar
  68. Schrappe M (2003) Prognostic factors in childhood acute lymphoblastic leukemia. Indian J Pediatr 70(10):817–824PubMedCrossRefGoogle Scholar
  69. Schultz KR, Bowman WP, Aledo A, Slayton WB, Sather H, Devidas M, Wang C, Davies SM, Gaynon PS, Trigg M, Rutledge R, Burden L, Jorstad D, Carroll A, Heerema NA, Winick N, Borowitz MJ, Hunger SP, Carroll WL, Camitta B (2009) Improved early event-free survival with imatinib in Philadelphia chromosome-positive acute lymphoblastic leukemia: a children’s oncology group study. J Clin Oncol: Off J Am Soc Clin Oncol 27(31):5175–5181. doi: 10.1200/JCO.2008.21.2514 CrossRefGoogle Scholar
  70. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX, de Lorenzo P, Valsecchi MG, Pieters R (2010) Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 115(14):2835–2844. doi: 10.1182/blood-2009-07-233049 PubMedCrossRefGoogle Scholar
  71. Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG, de Menezes RX, Pieters R, Stam RW (2009) Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114(27):5490–5498. doi: 10.1182/blood-2009-06-227660 PubMedCrossRefGoogle Scholar
  72. Stumpel DJ, Schotte D, Lange-Turenhout EA, Schneider P, Seslija L, de Menezes RX, Marquez VE, Pieters R, den Boer ML, Stam RW (2011) Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25(3):429–439. doi: 10.1038/leu.2010.282 PubMedCrossRefGoogle Scholar
  73. Sutcliffe MJ, Shuster JJ, Sather HN, Camitta BM, Pullen J, Schultz KR, Borowitz MJ, Gaynon PS, Carroll AJ, Heerema NA (2005) High concordance from independent studies by the Children’s Cancer Group (CCG) and Pediatric Oncology Group (POG) associating favorable prognosis with combined trisomies 4, 10, and 17 in children with NCI Standard-Risk B-precursor Acute Lymphoblastic Leukemia: a Children’s Oncology Group (COG) initiative. Leukemia 19(5):734–740. doi: 10.1038/sj.leu.2403673 PubMedCrossRefGoogle Scholar
  74. Szczepanski T, Harrison CJ, van Dongen JJ (2010) Genetic aberrations in paediatric acute leukaemias and implications for management of patients. Lancet Oncol 11(9):880–889. doi: 10.1016/S1470-2045(09)70369-9 PubMedCrossRefGoogle Scholar
  75. Szczepanski T, Langerak AW, Wolvers-Tettero IL, Ossenkoppele GJ, Verhoef G, Stul M, Petersen EJ, de Bruijn MA, van’t Veer MB, van Dongen JJ (1998) Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leuk: Off J Leuk Soc Am Leuk Res Fund, UK 12(7):1081–1088CrossRefGoogle Scholar
  76. Szczepański T, Pongers-Willemse MJ, Langerak AW, Harts WA, Wijkhuijs AJ, van Wering ER, van Dongen JJ (1999a) Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood 93(12):4079–4085PubMedGoogle Scholar
  77. Szczepański T, Pongers-Willemse MJ, Langerak AW, van Dongen JJ (1999b) Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Curr Top Microbiol Immunol 246:205–213 (discussion 214–205)Google Scholar
  78. Szczepański T, van der Velden VH, Raff T, Jacobs DC, van Wering ER, Bruggemann M, Kneba M, van Dongen JJ (2003) Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia 17(11):2149–2156PubMedCrossRefGoogle Scholar
  79. Szczepański T, Willemse MJ, Brinkhof B, van Wering ER, van der Burg M, van Dongen JJ (2002) Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood 99(7):2315–2323PubMedCrossRefGoogle Scholar
  80. Szczepański T, Willemse MJ, van Wering ER, van Weerden JF, Kamps WA, van Dongen JJ (2001) Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia 15(9):1415–1423PubMedCrossRefGoogle Scholar
  81. Tamai H, Inokuchi K (2010) 11q23/MLL acute leukemia : update of clinical aspects. J Clin Exp Hematop 50(2):91–98 JST.JSTAGE/jslrt/50.91 [pii]PubMedCrossRefGoogle Scholar
  82. van der Velden VH, Bruggemann M, Hoogeveen PG, de Bie M, Hart PG, Raff T, Pfeifer H, Luschen S, Szczepanski T, van Wering ER, Kneba M, van Dongen JJ (2004) TCRB gene rearrangements in childhood and adult precursor-B-ALL: frequency, applicability as MRD-PCR target, and stability between diagnosis and relapse. Leukemia 18(12):1971–1980PubMedCrossRefGoogle Scholar
  83. van der Velden VH, Szczepanski T, Wijkhuijs JM, Hart PG, Hoogeveen PG, Hop WC, van Wering ER, van Dongen JJ (2003) Age-related patterns of immunoglobulin and T-cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia 17(9):1834–1844PubMedCrossRefGoogle Scholar
  84. van der Velden VH, van Dongen JJ (2009) MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR. Methods Mol Biol 538:115–150. doi: 10.1007/978-1-59745-418-6_7 PubMedCrossRefGoogle Scholar
  85. van Dongen JJ, Comans-Bitter WM, Wolvers-Tettero IL, Borst J (1990) Development of human T lymphocytes and their thymus-dependency. Thymus 16(3–4):207–234PubMedGoogle Scholar
  86. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 concerted action BMH4-CT98-3936. Leukemia 17(12):2257–2317PubMedCrossRefGoogle Scholar
  87. van Dongen JJ, Wolvers-Tettero IL (1991) Analysis of immunoglobulin and T cell receptor genes. Part I: Basic and technical aspects. Clin Chim Acta 198(1–2):1–91PubMedCrossRefGoogle Scholar
  88. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellstrom-Lindberg E, Tefferi A, Bloomfield CD (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114(5):937–951. doi: 10.1182/blood-2009-03-209262 PubMedCrossRefGoogle Scholar
  89. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S, Pear WS, Bernstein ID (2000) Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6(11):1278–1281. doi: 10.1038/81390 PubMedCrossRefGoogle Scholar
  90. Waanders E, van der Velden VH, van der Schoot CE, van Leeuwen FN, van Reijmersdal SV, de Haas V, Veerman AJ, van Kessel AG, Hoogerbrugge PM, Kuiper RP, van Dongen JJ (2011) Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79 % of relapses in pediatric acute lymphoblastic leukemia. Leukemia 25(2):254–258. doi: 10.1038/leu.2010.275 PubMedCrossRefGoogle Scholar
  91. Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT, Aster JC (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science (New York, NY) 306(5694):269–271Google Scholar
  92. Wilson A, MacDonald HR, Radtke F (2001) Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J Exp Med 194(7):1003–1012PubMedCrossRefGoogle Scholar
  93. Yang JJ, Cheng C, Yang W, Pei D, Cao X, Fan Y, Pounds SB, Neale G, Trevino LR, French D, Campana D, Downing JR, Evans WE, Pui CH, Devidas M, Bowman WP, Camitta BM, Willman CL, Davies SM, Borowitz MJ, Carroll WL, Hunger SP, Relling MV (2009) Genome-wide interrogation of germline genetic variation associated with treatment response in childhood acute lymphoblastic leukemia. JAMA 301(4):393–403. doi: 10.1001/jama.2009.7 PubMedCrossRefGoogle Scholar
  94. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R, Behm FG, Raimondi SC, Relling MV, Patel A, Cheng C, Campana D, Wilkins D, Zhou X, Li J, Liu H, Pui CH, Evans WE, Naeve C, Wong L, Downing JR (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 1(2):133–143 S1535610802000326 [pii]PubMedCrossRefGoogle Scholar
  95. Zuurbier L, Homminga I, Calvert V, Winkel MT, Buijs-Gladdines JG, Kooi C, Smits WK, Sonneveld E, Veerman AJ, Kamps WA, Horstmann M, Petricoin EF, 3rd, Pieters R, Meijerink JP (2010) NOTCH1 and/or FBXW7 mutations predict for initial good prednisone response but not for improved outcome in pediatric T-cell acute lymphoblastic leukemia patients treated on DCOG or COALL protocols. Leukemia. doi: 10.1038/leu.2010.204

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Małgorzata Dawidowska
    • 1
  • Monika D. Kraszewska
    • 1
  • Katarzyna Derwich
    • 2
  • Tomasz Szczepański
    • 3
  1. 1.Department of Molecular and Clinical GeneticsInstitute of Human Genetics, Polish Academy of SciencesPoznańPoland
  2. 2.Department of Pediatric OncologyHematology and Transplantology, Poznań University of Medical SciencesPoznańPoland
  3. 3.Department of Pediatric Hematology and OncologyMedical University of SilesiaZabrzePoland

Personalised recommendations