Skip to main content

Lithium Transport Through Electrode with Irregular/Partially Inactive Interfaces

  • Chapter
  • First Online:
Electrochemistry of Insertion Materials for Hydrogen and Lithium

Part of the book series: Monographs in Electrochemistry ((MOEC))

Abstract

Fractal geometry is a tool employed to define real objects in nature which cannot be characterized by Euclidean geometry. It was conceptualized by Mandelbrot [1] and has been widely used in various fields such as science, art [2–4], economics [5–8], etc. Especially, in science, the secret of the anomalous phenomena which take place on rough and irregular surfaces has been unlocked with the help of fractal geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandelbrot BB (1983) The fractal geometry of nature. W.H. Freeman and Company, New York

    Book  Google Scholar 

  2. Peitgen HO, Saupe D (1988) The science of fractal images. Springer, New York

    Google Scholar 

  3. Pickover CA (1990) Computers, pattern, chaos and beauty. St. Martin’s Press, New York

    Google Scholar 

  4. Peitgen HO, Jürgens H, Saupe D (1992) Fractals for the classroom: introduction to fractals and chaos. Springer, New York

    Google Scholar 

  5. Mantegna RN, Stanley HE (1995) Scaling behaviour in the dynamics of an economic index. Nature 376:46–48

    Article  CAS  Google Scholar 

  6. Stanley MHR, Amaral LAN, Buldyrev SV, Havlin S, Leschhorn H, Maass P, Salinger MA, Stanley HE (1996) Scaling behaviour in the growth of companies. Nature 379:804–806

    Article  CAS  Google Scholar 

  7. Takayasu H, Okuyama K (1998) Country dependence on company size distributions and a numerical model based on competition and cooperation. Fractals 6:67–80

    Article  Google Scholar 

  8. Takayasu H, Takayasu M, Okazaki MP, Marumo K, Shimizu T (2000) In: Novak MN (ed) Paradigms of complexity: fractals and structures in the sciences. World Scientific, Singapore

    Google Scholar 

  9. Brady RM, Ball RC (1984) Fractal growth of copper electrodeposits. Nature 309:225–229

    Article  CAS  Google Scholar 

  10. Matsushita M, Sano M, Hayakawa Y, Honjo H, Sawada Y (1984) Fractal structures of zinc metal leaves grown by electrodeposition. Phys Rev Lett 53:286–289

    Article  CAS  Google Scholar 

  11. Grier D, Ben-Jacob E, Clarke R, Sander LM (1986) Morphology and microstructure in electrochemical deposition of zinc. Phys Rev Lett 56:1264–1267

    Article  CAS  Google Scholar 

  12. Meakin P (1986) Fractal scaling in thin film condensation and material surfaces. Crit Rev Solid State Mater Sci 13:143–189

    Article  Google Scholar 

  13. de Levie R (1990) Fractals and rough electrodes. J Electroanal Chem 281:1–21

    Article  Google Scholar 

  14. Sagues F, Mas F, Vilarrasa M, Costa JM (1990) Fractal electrodeposits of zinc and copper. J Electroanal Chem 278:351–360

    Article  CAS  Google Scholar 

  15. Gómez-Rodríguez JM, Baró AM, Salvarezza RC (1991) Fractal characterization of gold deposits by scanning tunneling microscopy. J Vac Sci Technol B 9:495–499

    Article  Google Scholar 

  16. Ocon P, Herrasti P, Vázquez L, Salvarezza RC, Vara JM, Arvia AJ (1991) Fractal characterisation of electrodispersed gold electrodes. J Electroanal Chem 319:101–110

    Article  CAS  Google Scholar 

  17. Gómez-Rodríguez JM, Baró AM, Vázquez L, Salvarezza RC, Vara JM, Arvia AJ (1992) Fractal surfaces of gold and platinum electrodeposits: dimensionality determination by scanning tunneling microscopy. J Phys Chem 96:347–350

    Article  Google Scholar 

  18. Herrasti P, Ocón P, Salvarezza RC, Vara JM, Viázquez L, Arvia AJ (1992) A comparative study of electrodeposited and vapour deposited gold films: fractal surface characterization through scanning tunnelling microscopy. Electrochim Acta 37:2209–2214

    Article  CAS  Google Scholar 

  19. Vázquez L, Salvarezza RC, Ocón P, Herrasti P, Vara JM, Arvia AJ (1994) Self-affine fractal electrodeposited gold surfaces: characterization by scanning tunneling microscopy. Phys Rev E 49:1507–1511

    Article  Google Scholar 

  20. Antonucci PL, Barberi R, Aricò AS, Amoddeo A, Antonucci V (1996) Fractal surface characterization of chalcogenide electrodeposits. Mater Sci Eng B 38:9–15

    Article  Google Scholar 

  21. Huang W, Brynn Hibbert D (1996) Fast fractal growth with diffusion, convection and migration by computer simulation: effects of voltage on probability, morphology and fractal dimension of electrochemical growth in a rectangular cell. Phys A 233:888–896

    Article  CAS  Google Scholar 

  22. Kessler T, Visintin A, Bolzan AE, Andreasen G, Salvarezza RC, Triaca WE, Arvia AJ (1996) Electrochemical and scanning force microscopy characterization of fractal palladium surfaces resulting from the electroreduction of palladium oxide layers. Langmuir 12:6587–6596

    Article  CAS  Google Scholar 

  23. Gobal F, Malek K, Mahjani MG, Jafarian M, Safarnavadeh V (2000) A study of the fractal dimensions of the electrodeposited poly-ortho-aminophenol films in presence of different anions. Synth Met 108:15–19

    Article  CAS  Google Scholar 

  24. Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:721–722

    Article  CAS  Google Scholar 

  25. Underwood EE, Banerji K (1986) Fractals in fractography. Mat Sci Eng 80:1–14

    Article  Google Scholar 

  26. Pande CS, Richards LE, Louat N, Dempsey BD, Schwoeble AJ (1987) Fractal characterization of fractured surfaces. Acta Metall 35:1633–1637

    Article  CAS  Google Scholar 

  27. Wang ZG, Chen DL, Jiang XX, Ai SH, Shih CH (1988) Relationship between fractal dimension and fatigue threshold value in dual-phase steels. Scripta Metall 22:827–832

    Article  CAS  Google Scholar 

  28. Lung CW, Zhang SZ (1989) Fractal dimension of the fractured surface of materials. Phys D 38:242–245

    Article  Google Scholar 

  29. Imre A, Pajkossy T, Nyikos L (1992) Electrochemical determination of the fractal dimension of fractured surfaces. Acta Metall Mater 40:1819–1826

    Article  CAS  Google Scholar 

  30. Voss RF, Laibowitz RB, Allessandrini EI (1982) Fractal (scaling) clusters in thin gold films near the percolation threshold. Phys Rev Lett 49:1441–1444

    Article  CAS  Google Scholar 

  31. Gómez-Rodríguez JM, Asenjo A, Salvarezza RC, Baró AM (1992) Measuring the fractal dimension with STM: application to vacuum-evaporated gold. Ultramicroscopy 42–44:1321–1328

    Article  Google Scholar 

  32. Rao MVH, Mathur BK, Chopra KL (1994) Evaluation of the scaling exponent of self-affine fractal surface from a single scanning probe microscope image. Appl Phys Lett 65:124–126

    Article  CAS  Google Scholar 

  33. Spanos L, Irene EA (1994) Investigation of roughened silicon surfaces using fractal analysis. I. Two‐dimensional variation method. J Vac Sci Technol A 12:2646–2652

    Article  CAS  Google Scholar 

  34. Douketis C, Wang Z, Haslett TL, Moskovits M (1995) Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Phys Rev B 51:11022–11031

    Article  CAS  Google Scholar 

  35. Mbise GW, Niklasson GA, Granqvist CG (1996) Scaling of surface roughness in evaporated calcium fluoride films. Solid State Commun 97:965–969

    Article  CAS  Google Scholar 

  36. Salvadori MC, Silveira MG, Cattani M (1998) Measurement of critical exponents of diamond films by atomic force microscopy imaging. Phys Rev E 58:6814–6816

    Article  CAS  Google Scholar 

  37. Kleinke MU, Davalos J, Polo da Fonseca C, Gorenstein A (1999) Scaling laws in annealed LiCoOx films. Appl Phys Lett 74:1683–1685

    Article  CAS  Google Scholar 

  38. Niklasson GA, Rönnow D, Strømme M, Kullman L, Nilsson H, Roos A (2000) Surface roughness of pyrolytic tin dioxide films evaluated by different methods. Thin Solid Films 359:203–209

    Article  CAS  Google Scholar 

  39. Silva LLG, Ferreira NG, Dotto MER, Kleinke MU (2001) The fractal dimension of boron-doped diamond films. Appl Surf Sci 181:327–330

    Article  CAS  Google Scholar 

  40. Shin HC, Pyun SI, Go JY (2002) A Study on the simulated diffusion-limited current transient of a self-affine fractal electrode based upon the scaling property. J Electroanal Chem 531:101–109

    Article  CAS  Google Scholar 

  41. Sun X, Fu Z, Wu Z (2002) Fractal processing of AFM images of rough ZnO films. Mater Charact 48:169–175

    Article  CAS  Google Scholar 

  42. Go JY, Pyun SI, Hahn YD (2003) A study on ionic diffusion towards self-affine fractal electrode by cyclic voltammetry and atomic force microscopy. J Electroanal Chem 549:49–59

    Article  CAS  Google Scholar 

  43. Go JY, Pyun SI (2004) A study on lithium transport through fractal Li1−δCoO2 film electrode by analysis of current transient based upon fractal theory. Electrochim Acta 49:2551–2562

    Article  CAS  Google Scholar 

  44. Costa JM, Sagués F, Vilarrasa M (1991) Fractal patterns from corrosion pitting. Corros Sci 32:665–668

    Article  CAS  Google Scholar 

  45. Jøssang T, Feder J (1992) The fractal characterization of rough surfaces. Phys Scripta T 44:9–14

    Article  Google Scholar 

  46. Holten T, Jøssang T, Meakin P, Feder J (1994) Fractal characterization of two-dimensional aluminum corrosion fronts. Phys Rev E 50:754–759

    Article  CAS  Google Scholar 

  47. Balázs L, Gouyet JF (1995) Two-dimensional pitting corrosion of aluminium thin layers. Phys A 217:319–338

    Article  Google Scholar 

  48. Park JJ, Pyun SI (2003) Pit formation and growth of alloy 600 in Cl ion-containing thiosulfate solution at temperatures 298–573 K using fractal geometry. Corros Sci 45:995–1010

    Article  CAS  Google Scholar 

  49. Park JJ, Pyun SI (2003) Analysis of impedance spectra of a pitted Inconel Alloy 600 electrode in chloride ion-containing thiosulfate solution at temperatures of 298–573 K. J Solid State Electrochem 7:380–288

    CAS  Google Scholar 

  50. Park JJ, Pyun SI (2004) Stochastic approach to the pit growth kinetics of Inconel Alloy 600 in Cl ion-containing thiosulphate solution at temperatures 25–150°C by analysis of the potentiostatic current transients. Corros Sci 46:285–296

    Article  CAS  Google Scholar 

  51. Pyun SI, Park JJ (2004) Fractal analysis of pit morphology of Inconel Alloy 600 in sulphate, nitrate and bicarbonate ion-containing sodium chloride solution at temperatures 25–100°C. J Solid State Electrochem 8:296–307

    Article  CAS  Google Scholar 

  52. Almqvist N, Rubel M, Franconi E (1995) Surface characterization of SiC composites exposed to deuterium ions, using atomic force microscopy. Mater Sci Eng A 201:277–285

    Article  Google Scholar 

  53. Almqvist N, Rubel M, Wienhold P, Fredriksson S (1995) Roughness determination of plasma-modified surface layers with atomic force microscopy. Thin Solid Films 270:426–430

    Article  CAS  Google Scholar 

  54. Almqvist N (1996) Fractal analysis of scanning probe microscopy images. Surf Sci 355:221–228

    Article  CAS  Google Scholar 

  55. Arnault JC, Knoll A, Smigiel E, Cornet A (2001) Roughness fractal approach of oxidised surfaces by AFM and diffuse X-ray reflectometry measurements. Appl Surf Sci 171:189–196

    Article  CAS  Google Scholar 

  56. Kirbs A, Lange R, Nebe B, Rychly J, Müller P, Beck U (2003) On the description of the fractal nature of microstructured surfaces of titanium implants. Mater Sci Eng C 23:413–418

    Article  Google Scholar 

  57. Kirbs A, Lange R, Nebe B, Rychly R, Baumann A, Neumann HG, Beck U (2003) Methods for the physical and chemical characterisation of surfaces of titanium implants. Mater Sci Eng C 23:425–429

    Article  Google Scholar 

  58. Go JY, Pyun SI (2005) Chapter 4 Fractal approach to rough surfaces and interfaces in electrochemistry. In: Vayenas CG, White RE, Gamboa-adelco ME (eds) Modern aspects of electrochemistry, vol 39. Kluwer Academic/Plenum, New York, pp 167–229

    Chapter  Google Scholar 

  59. Go JY, Pyun SI (2007) A review of anomalous diffusion phenomena at fractal interface for diffusion-controlled and non-diffusion-controlled transfer processes. J Solid State Electrochem 11:323–334

    Article  CAS  Google Scholar 

  60. Feder J (1988) Fractals. Plenum, New York

    Google Scholar 

  61. Voss RF (1991) Dynamics of fractal surfaces. In: Family F, Vicsek T (eds) Randon fractals: characterization and measurement. World Scientific, New Jersey

    Google Scholar 

  62. Gouyet JF (1995) Physics and fractal structures. Springer, New York

    Google Scholar 

  63. So P, Barreto E, Hunt BR (1999) Box-counting dimension without boxes: computing D0 from average expansion rates. Phys Rev E 60:378–385

    Article  CAS  Google Scholar 

  64. Bisoi AK, Mishra J (2001) On calculation of fractal dimension of images. Pattern Recognit Lett 22:631–637

    Article  Google Scholar 

  65. Mandelbrot BB (1986) In: Pietronero L, Tosatti E (eds) Fractals in physics. North-Holland, Amsterdam

    Google Scholar 

  66. Gouyet JF, Rosso M, Sapoval B (1996) In: Bunde A, Havlin S (eds) Fractals and disordered systems. Springer, New York

    Google Scholar 

  67. Vicsek T (1991) Fractal growth phenomena, 2nd edn. World Scientific, Singapore

    Google Scholar 

  68. Majumdar A, Bhushan B (1990) Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J Tribol 112:205–216

    Article  Google Scholar 

  69. Majumdar A, Tien CL (1990) Fractal characterization and simulation of rough surfaces. Wear 136:313–327

    Article  Google Scholar 

  70. Majumdar A, Bhushan B (1999) Characterization and modeling of surface roughness and contact mechanics. In: Bhushan B (ed) Handbook of micro/nano tribology, 2nd edn. CRC Press, New York

    Google Scholar 

  71. Silk T, Hong Q, Tamm J, Compton RG (1998) AFM studies of polypyrrole film surface morphology – II. Roughness characterization by the fractal dimension analysis. Synth Met 93:65–69

    Article  CAS  Google Scholar 

  72. Russ JC (1994) Fractal surfaces. Plenum, New York

    Google Scholar 

  73. Clark KC (1986) Computation of the fractal dimension of topographic surfaces using the tricangular prism surface area. Comput Geosci 12:713–722

    Article  Google Scholar 

  74. Liu J, Furuno T (2001) The fractal evaluation of wood texture by the triangular prism surface area method. Wood Fiber Sci 33:213–222

    CAS  Google Scholar 

  75. Liu J, Furuno T (2002) The fractal estimation of wood color variation by the triangular prism surface area method. Wood Sci Technol 36:385–397

    Article  CAS  Google Scholar 

  76. Kim CH, Pyun SI, Kim JH (2003) An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations. Electrochim Acta 48:3455–3463

    Article  CAS  Google Scholar 

  77. Mandelbrot BB (1985) Self-affine fractals and fractal dimension. Phys Scripta 32:257–260

    Article  Google Scholar 

  78. Salavarezza RC, Arvia AJ (1995) Chapter 5 A modern approach to surface roughness applied to electrochemical systems. In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol 28. Plenum, New York

    Google Scholar 

  79. Lakshminarayanan V, Srinivasan R, Chu D, Gilman S (1997) Area determination in fractal surfaces of Pt and PtRu electrodes. Surf Sci 392:44–51

    Article  CAS  Google Scholar 

  80. Majumdar A, Bhushan B, Tien CL (1991) Role of fractal geometry in tribology. Adv Inf Storage Syst 1:231–266

    Google Scholar 

  81. Oden PI, Majumdar A, Bhushan B, Padmanabhan A, Graham JJ (1992) AFM imaging, roughness analysis and contact mechanics of magnetic tape and head surfaces. J Tribol 114:666–674

    Article  CAS  Google Scholar 

  82. Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic, San Diego

    Google Scholar 

  83. Le Mehaute A, Crepy G (1983) Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ion 9&10:17–30

    Google Scholar 

  84. Le Mehaute A (1984) Transfer processes in fractal media. J Stat Phys 36:665–676

    Article  Google Scholar 

  85. Nigmatullin RR (1986) The realization of the generalized transfer equation in a medium with fractal geometry. Phys Status Solidi B 133:425–430

    Article  CAS  Google Scholar 

  86. Wyss W (1986) The fractional diffusion equation. J Math Phys 27:2782–2785

    Article  Google Scholar 

  87. Schneider WR, Wyss W (1989) Fractional diffusion and wave equations. J Math Phys 30:134–144

    Article  Google Scholar 

  88. Mainardi F (1996) The fundamental solutions for the fractional diffusion – wave equation. Appl Math Lett 9:23–28

    Article  Google Scholar 

  89. Dassas Y, Duby P (1995) Diffusion toward fractal interfaces: potentiostatics, galvanostatic, and linear sweep voltammetric techniques. J Electrochem Soc 142:4175–4180

    Article  CAS  Google Scholar 

  90. Lee JW, Pyun SI (2005) Anomalous behaviour in diffusion impedance of intercalation electrodes. Z Metallkd 96:117–123

    CAS  Google Scholar 

  91. Ho C, Raistrick ID, Huggins RA (1980) Application of a-c techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–349

    Article  CAS  Google Scholar 

  92. Jacobsen T, West K (1995) Diffusion impedance in planar, cylindrical and spherical symmetry. Electrochim Acta 40:255–262

    Article  CAS  Google Scholar 

  93. Ding S, Petuskey WT (1998) Solutions to Fick’s second law of diffusion with a sinusoidal excitation. Solid State Ion 109:101–110

    Article  CAS  Google Scholar 

  94. Diard JP, Le Gorrec B, Montella C (1999) Linear diffusion impedance. General expression and applications. J Electroanal Chem 471:126–131

    Article  CAS  Google Scholar 

  95. Bisquert J, Compte A (2001) Theory of the electrochemical impedance of anomalous diffusion. J Electroanal Chem 499:112–120

    Article  CAS  Google Scholar 

  96. Han JN, Seo M, Pyun SI (2001) Analysis of anodic current transient and beam deflection transient simultaneously measured from Pd foil electrode pre-charged with hydrogen. J Electroanal Chem 499:152–160

    Article  CAS  Google Scholar 

  97. Han JN, Lee JW, Seo M, Pyun SI (2001) Analysis of stresses generated during hydrogen transport through a Pd foil electrode under potential sweep conditions. J Electroanal Chem 506:1–10

    Article  CAS  Google Scholar 

  98. Pyun SI, Lee JW, Han JN (2002) The kinetics of hydrogen transport through Pd foil electrode in the coexistence of two hydride phases by analysis of anodic current transient. J New Mater Electrochem Syst 5:243–249

    CAS  Google Scholar 

  99. Lee SJ, Pyun SI, Lee JW (2005) Investigation of hydrogen transport through Mm(Ni3.6Co0.7Mn0.4Al0.3)1.12 and Zr0.65Ti0.35Ni1.2V0.4Mn0.4 hydride electrodes by analysis of anodic current transient. Electrochim Acta 50:1121–1130

    Article  CAS  Google Scholar 

  100. Lee JW, Pyun SI (2005) Anomalous behaviour of hydrogen extraction from hydride-forming metals and alloys under impermeable boundary conditions. Electrochim Acta 50:1777–1805

    Article  CAS  Google Scholar 

  101. Shin HC, Pyun SI (1999) The kinetics of lithium transport through Li1−δCoO2 by theoretical analysis of current transient. Electrochim Acta 45:489–501

    Article  CAS  Google Scholar 

  102. Go JY, Pyun SI, Shin HC (2002) Lithium transport through the Li1−δCoO2 film electrode prepared by rf magnetron sputtering. J Electroanal Chem 527:93–102

    Article  CAS  Google Scholar 

  103. Shin HC, Pyun SI (2003) Chapter 5 Mechanisms of lithium transport through transition metal oxides and carbonaceous materials. In: Vayenas CG, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 36. Kluwer Academic/Plenum, New York

    Google Scholar 

  104. Lee JW, Pyun SI (2004) Investigation of lithium transport through LiMn2O4 film electrode in aqueous LiNO3 solution. Electrochim Acta 49:753–761

    Article  CAS  Google Scholar 

  105. de Levie R, Vogt A (1990) On the electrochemical response of rough electrodes: Part II. The transient response in the presence of slow faradaic processes. J Electroanal Chem 281:23–28

    Article  Google Scholar 

  106. Kant R, Rangarajan SK (1995) Diffusion to rough interfaces: finite charge transfer rates. J Electroanal Chem 396:285–301

    Article  Google Scholar 

  107. Lee JW, Pyun SI (2005) A study on the potentiostatic current transient and linear sweep voltammogram simulated from fractal intercalation electrode: diffusion coupled with interfacial charge transfer. Electrochim Acta 50:1947–1955

    Article  CAS  Google Scholar 

  108. Go JY, Pyun SI (2005) Theoretical approach to cell-impedance-controlled lithium transport through Li1−δCoO2 film electrode with fractal surface: numerical analysis of generalised diffusion equation. Electrochim Acta 50:3479–3487

    Article  CAS  Google Scholar 

  109. Go JY, Pyun SI, Cho SI (2005) An experimental study on cell-impedance-controlled lithium transport through Li1−δCoO2 film electrode with fractal surface by analyses of potentiostatic current transient and linear sweep voltammogram. Electrochim Acta 50:5435–5443

    Article  CAS  Google Scholar 

  110. Jung KN, Pyun SI (2006) Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept. Electrochim Acta 51:2646–2655

    Article  CAS  Google Scholar 

  111. Jung KN, Pyun SI (2006) The cell-impedance-controlled lithium transport through LiMn2O4 film electrode with fractal surface by analyses of ac-impedance spectra, potentiostatic current transient and linear sweep voltammogram. Electrochim Acta 51:4649–4658

    Article  CAS  Google Scholar 

  112. Lee SB, Pyun SI, Rhee CK (2003) Determination of the fractal dimensions of green MCMB and MCMB heat-treated at 800–1200°C by using gas adsorption method. Carbon 41:2446–2451

    Article  CAS  Google Scholar 

  113. Pajkossy T, Nyikos L (1989) Diffusion to fractal surfaces – II. Verification of theory. Electrochim Acta 34:171–179

    Article  CAS  Google Scholar 

  114. Lee SB, Pyun SI (2003) Determination of the morphology of surface groups formed and pvdf-binder materials dispersed on the graphite composite electrodes in terms of fractal geometry. J Electroanal Chem 556:75–82

    Article  CAS  Google Scholar 

  115. Strømme M, Niklasson GA, Granqvist CG (1996) Fractal surface dimension from cyclic I-V studies and atomic-force microscopy: role of noncontiguous reaction sites. Phys Rev B 54:17884–17887

    Article  Google Scholar 

  116. Jung KN, Pyun SI (2007) Theoretical approach to cell-impedance-controlled lithium transport through Li1−δMn2O4 film electrode with partially inactive fractal surface by analyses of potentiostatic current transient and linear sweep voltammogram. Electrochim Acta 52:2009–2017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pyun, SI., Shin, HC., Lee, JW., Go, JY. (2012). Lithium Transport Through Electrode with Irregular/Partially Inactive Interfaces. In: Electrochemistry of Insertion Materials for Hydrogen and Lithium. Monographs in Electrochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29464-8_9

Download citation

Publish with us

Policies and ethics