Advertisement

Lithium Transport Through Electrode with Irregular/Partially Inactive Interfaces

  • Su-Il Pyun
  • Heon-Cheol Shin
  • Jong-Won Lee
  • Joo-Young Go
Chapter
Part of the Monographs in Electrochemistry book series (MOEC)

Abstract

Fractal geometry is a tool employed to define real objects in nature which cannot be characterized by Euclidean geometry. It was conceptualized by Mandelbrot [1] and has been widely used in various fields such as science, art [2–4], economics [5–8], etc. Especially, in science, the secret of the anomalous phenomena which take place on rough and irregular surfaces has been unlocked with the help of fractal geometry.

Keywords

Fractal Dimension Fractal Interface Power Exponent Sierpinski Gasket Kelvin Probe Force Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Mandelbrot BB (1983) The fractal geometry of nature. W.H. Freeman and Company, New YorkCrossRefGoogle Scholar
  2. 2.
    Peitgen HO, Saupe D (1988) The science of fractal images. Springer, New YorkGoogle Scholar
  3. 3.
    Pickover CA (1990) Computers, pattern, chaos and beauty. St. Martin’s Press, New YorkGoogle Scholar
  4. 4.
    Peitgen HO, Jürgens H, Saupe D (1992) Fractals for the classroom: introduction to fractals and chaos. Springer, New YorkGoogle Scholar
  5. 5.
    Mantegna RN, Stanley HE (1995) Scaling behaviour in the dynamics of an economic index. Nature 376:46–48CrossRefGoogle Scholar
  6. 6.
    Stanley MHR, Amaral LAN, Buldyrev SV, Havlin S, Leschhorn H, Maass P, Salinger MA, Stanley HE (1996) Scaling behaviour in the growth of companies. Nature 379:804–806CrossRefGoogle Scholar
  7. 7.
    Takayasu H, Okuyama K (1998) Country dependence on company size distributions and a numerical model based on competition and cooperation. Fractals 6:67–80CrossRefGoogle Scholar
  8. 8.
    Takayasu H, Takayasu M, Okazaki MP, Marumo K, Shimizu T (2000) In: Novak MN (ed) Paradigms of complexity: fractals and structures in the sciences. World Scientific, SingaporeGoogle Scholar
  9. 9.
    Brady RM, Ball RC (1984) Fractal growth of copper electrodeposits. Nature 309:225–229CrossRefGoogle Scholar
  10. 10.
    Matsushita M, Sano M, Hayakawa Y, Honjo H, Sawada Y (1984) Fractal structures of zinc metal leaves grown by electrodeposition. Phys Rev Lett 53:286–289CrossRefGoogle Scholar
  11. 11.
    Grier D, Ben-Jacob E, Clarke R, Sander LM (1986) Morphology and microstructure in electrochemical deposition of zinc. Phys Rev Lett 56:1264–1267CrossRefGoogle Scholar
  12. 12.
    Meakin P (1986) Fractal scaling in thin film condensation and material surfaces. Crit Rev Solid State Mater Sci 13:143–189CrossRefGoogle Scholar
  13. 13.
    de Levie R (1990) Fractals and rough electrodes. J Electroanal Chem 281:1–21CrossRefGoogle Scholar
  14. 14.
    Sagues F, Mas F, Vilarrasa M, Costa JM (1990) Fractal electrodeposits of zinc and copper. J Electroanal Chem 278:351–360CrossRefGoogle Scholar
  15. 15.
    Gómez-Rodríguez JM, Baró AM, Salvarezza RC (1991) Fractal characterization of gold deposits by scanning tunneling microscopy. J Vac Sci Technol B 9:495–499CrossRefGoogle Scholar
  16. 16.
    Ocon P, Herrasti P, Vázquez L, Salvarezza RC, Vara JM, Arvia AJ (1991) Fractal characterisation of electrodispersed gold electrodes. J Electroanal Chem 319:101–110CrossRefGoogle Scholar
  17. 17.
    Gómez-Rodríguez JM, Baró AM, Vázquez L, Salvarezza RC, Vara JM, Arvia AJ (1992) Fractal surfaces of gold and platinum electrodeposits: dimensionality determination by scanning tunneling microscopy. J Phys Chem 96:347–350CrossRefGoogle Scholar
  18. 18.
    Herrasti P, Ocón P, Salvarezza RC, Vara JM, Viázquez L, Arvia AJ (1992) A comparative study of electrodeposited and vapour deposited gold films: fractal surface characterization through scanning tunnelling microscopy. Electrochim Acta 37:2209–2214CrossRefGoogle Scholar
  19. 19.
    Vázquez L, Salvarezza RC, Ocón P, Herrasti P, Vara JM, Arvia AJ (1994) Self-affine fractal electrodeposited gold surfaces: characterization by scanning tunneling microscopy. Phys Rev E 49:1507–1511CrossRefGoogle Scholar
  20. 20.
    Antonucci PL, Barberi R, Aricò AS, Amoddeo A, Antonucci V (1996) Fractal surface characterization of chalcogenide electrodeposits. Mater Sci Eng B 38:9–15CrossRefGoogle Scholar
  21. 21.
    Huang W, Brynn Hibbert D (1996) Fast fractal growth with diffusion, convection and migration by computer simulation: effects of voltage on probability, morphology and fractal dimension of electrochemical growth in a rectangular cell. Phys A 233:888–896CrossRefGoogle Scholar
  22. 22.
    Kessler T, Visintin A, Bolzan AE, Andreasen G, Salvarezza RC, Triaca WE, Arvia AJ (1996) Electrochemical and scanning force microscopy characterization of fractal palladium surfaces resulting from the electroreduction of palladium oxide layers. Langmuir 12:6587–6596CrossRefGoogle Scholar
  23. 23.
    Gobal F, Malek K, Mahjani MG, Jafarian M, Safarnavadeh V (2000) A study of the fractal dimensions of the electrodeposited poly-ortho-aminophenol films in presence of different anions. Synth Met 108:15–19CrossRefGoogle Scholar
  24. 24.
    Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308:721–722CrossRefGoogle Scholar
  25. 25.
    Underwood EE, Banerji K (1986) Fractals in fractography. Mat Sci Eng 80:1–14CrossRefGoogle Scholar
  26. 26.
    Pande CS, Richards LE, Louat N, Dempsey BD, Schwoeble AJ (1987) Fractal characterization of fractured surfaces. Acta Metall 35:1633–1637CrossRefGoogle Scholar
  27. 27.
    Wang ZG, Chen DL, Jiang XX, Ai SH, Shih CH (1988) Relationship between fractal dimension and fatigue threshold value in dual-phase steels. Scripta Metall 22:827–832CrossRefGoogle Scholar
  28. 28.
    Lung CW, Zhang SZ (1989) Fractal dimension of the fractured surface of materials. Phys D 38:242–245CrossRefGoogle Scholar
  29. 29.
    Imre A, Pajkossy T, Nyikos L (1992) Electrochemical determination of the fractal dimension of fractured surfaces. Acta Metall Mater 40:1819–1826CrossRefGoogle Scholar
  30. 30.
    Voss RF, Laibowitz RB, Allessandrini EI (1982) Fractal (scaling) clusters in thin gold films near the percolation threshold. Phys Rev Lett 49:1441–1444CrossRefGoogle Scholar
  31. 31.
    Gómez-Rodríguez JM, Asenjo A, Salvarezza RC, Baró AM (1992) Measuring the fractal dimension with STM: application to vacuum-evaporated gold. Ultramicroscopy 42–44:1321–1328CrossRefGoogle Scholar
  32. 32.
    Rao MVH, Mathur BK, Chopra KL (1994) Evaluation of the scaling exponent of self-affine fractal surface from a single scanning probe microscope image. Appl Phys Lett 65:124–126CrossRefGoogle Scholar
  33. 33.
    Spanos L, Irene EA (1994) Investigation of roughened silicon surfaces using fractal analysis. I. Two‐dimensional variation method. J Vac Sci Technol A 12:2646–2652CrossRefGoogle Scholar
  34. 34.
    Douketis C, Wang Z, Haslett TL, Moskovits M (1995) Fractal character of cold-deposited silver films determined by low-temperature scanning tunneling microscopy. Phys Rev B 51:11022–11031CrossRefGoogle Scholar
  35. 35.
    Mbise GW, Niklasson GA, Granqvist CG (1996) Scaling of surface roughness in evaporated calcium fluoride films. Solid State Commun 97:965–969CrossRefGoogle Scholar
  36. 36.
    Salvadori MC, Silveira MG, Cattani M (1998) Measurement of critical exponents of diamond films by atomic force microscopy imaging. Phys Rev E 58:6814–6816CrossRefGoogle Scholar
  37. 37.
    Kleinke MU, Davalos J, Polo da Fonseca C, Gorenstein A (1999) Scaling laws in annealed LiCoOx films. Appl Phys Lett 74:1683–1685CrossRefGoogle Scholar
  38. 38.
    Niklasson GA, Rönnow D, Strømme M, Kullman L, Nilsson H, Roos A (2000) Surface roughness of pyrolytic tin dioxide films evaluated by different methods. Thin Solid Films 359:203–209CrossRefGoogle Scholar
  39. 39.
    Silva LLG, Ferreira NG, Dotto MER, Kleinke MU (2001) The fractal dimension of boron-doped diamond films. Appl Surf Sci 181:327–330CrossRefGoogle Scholar
  40. 40.
    Shin HC, Pyun SI, Go JY (2002) A Study on the simulated diffusion-limited current transient of a self-affine fractal electrode based upon the scaling property. J Electroanal Chem 531:101–109CrossRefGoogle Scholar
  41. 41.
    Sun X, Fu Z, Wu Z (2002) Fractal processing of AFM images of rough ZnO films. Mater Charact 48:169–175CrossRefGoogle Scholar
  42. 42.
    Go JY, Pyun SI, Hahn YD (2003) A study on ionic diffusion towards self-affine fractal electrode by cyclic voltammetry and atomic force microscopy. J Electroanal Chem 549:49–59CrossRefGoogle Scholar
  43. 43.
    Go JY, Pyun SI (2004) A study on lithium transport through fractal Li1−δCoO2 film electrode by analysis of current transient based upon fractal theory. Electrochim Acta 49:2551–2562CrossRefGoogle Scholar
  44. 44.
    Costa JM, Sagués F, Vilarrasa M (1991) Fractal patterns from corrosion pitting. Corros Sci 32:665–668CrossRefGoogle Scholar
  45. 45.
    Jøssang T, Feder J (1992) The fractal characterization of rough surfaces. Phys Scripta T 44:9–14CrossRefGoogle Scholar
  46. 46.
    Holten T, Jøssang T, Meakin P, Feder J (1994) Fractal characterization of two-dimensional aluminum corrosion fronts. Phys Rev E 50:754–759CrossRefGoogle Scholar
  47. 47.
    Balázs L, Gouyet JF (1995) Two-dimensional pitting corrosion of aluminium thin layers. Phys A 217:319–338CrossRefGoogle Scholar
  48. 48.
    Park JJ, Pyun SI (2003) Pit formation and growth of alloy 600 in Cl ion-containing thiosulfate solution at temperatures 298–573 K using fractal geometry. Corros Sci 45:995–1010CrossRefGoogle Scholar
  49. 49.
    Park JJ, Pyun SI (2003) Analysis of impedance spectra of a pitted Inconel Alloy 600 electrode in chloride ion-containing thiosulfate solution at temperatures of 298–573 K. J Solid State Electrochem 7:380–288Google Scholar
  50. 50.
    Park JJ, Pyun SI (2004) Stochastic approach to the pit growth kinetics of Inconel Alloy 600 in Cl ion-containing thiosulphate solution at temperatures 25–150°C by analysis of the potentiostatic current transients. Corros Sci 46:285–296CrossRefGoogle Scholar
  51. 51.
    Pyun SI, Park JJ (2004) Fractal analysis of pit morphology of Inconel Alloy 600 in sulphate, nitrate and bicarbonate ion-containing sodium chloride solution at temperatures 25–100°C. J Solid State Electrochem 8:296–307CrossRefGoogle Scholar
  52. 52.
    Almqvist N, Rubel M, Franconi E (1995) Surface characterization of SiC composites exposed to deuterium ions, using atomic force microscopy. Mater Sci Eng A 201:277–285CrossRefGoogle Scholar
  53. 53.
    Almqvist N, Rubel M, Wienhold P, Fredriksson S (1995) Roughness determination of plasma-modified surface layers with atomic force microscopy. Thin Solid Films 270:426–430CrossRefGoogle Scholar
  54. 54.
    Almqvist N (1996) Fractal analysis of scanning probe microscopy images. Surf Sci 355:221–228CrossRefGoogle Scholar
  55. 55.
    Arnault JC, Knoll A, Smigiel E, Cornet A (2001) Roughness fractal approach of oxidised surfaces by AFM and diffuse X-ray reflectometry measurements. Appl Surf Sci 171:189–196CrossRefGoogle Scholar
  56. 56.
    Kirbs A, Lange R, Nebe B, Rychly J, Müller P, Beck U (2003) On the description of the fractal nature of microstructured surfaces of titanium implants. Mater Sci Eng C 23:413–418CrossRefGoogle Scholar
  57. 57.
    Kirbs A, Lange R, Nebe B, Rychly R, Baumann A, Neumann HG, Beck U (2003) Methods for the physical and chemical characterisation of surfaces of titanium implants. Mater Sci Eng C 23:425–429CrossRefGoogle Scholar
  58. 58.
    Go JY, Pyun SI (2005)  Chapter 4 Fractal approach to rough surfaces and interfaces in electrochemistry. In: Vayenas CG, White RE, Gamboa-adelco ME (eds) Modern aspects of electrochemistry, vol 39. Kluwer Academic/Plenum, New York, pp 167–229CrossRefGoogle Scholar
  59. 59.
    Go JY, Pyun SI (2007) A review of anomalous diffusion phenomena at fractal interface for diffusion-controlled and non-diffusion-controlled transfer processes. J Solid State Electrochem 11:323–334CrossRefGoogle Scholar
  60. 60.
    Feder J (1988) Fractals. Plenum, New YorkGoogle Scholar
  61. 61.
    Voss RF (1991) Dynamics of fractal surfaces. In: Family F, Vicsek T (eds) Randon fractals: characterization and measurement. World Scientific, New JerseyGoogle Scholar
  62. 62.
    Gouyet JF (1995) Physics and fractal structures. Springer, New YorkGoogle Scholar
  63. 63.
    So P, Barreto E, Hunt BR (1999) Box-counting dimension without boxes: computing D0 from average expansion rates. Phys Rev E 60:378–385CrossRefGoogle Scholar
  64. 64.
    Bisoi AK, Mishra J (2001) On calculation of fractal dimension of images. Pattern Recognit Lett 22:631–637CrossRefGoogle Scholar
  65. 65.
    Mandelbrot BB (1986) In: Pietronero L, Tosatti E (eds) Fractals in physics. North-Holland, AmsterdamGoogle Scholar
  66. 66.
    Gouyet JF, Rosso M, Sapoval B (1996) In: Bunde A, Havlin S (eds) Fractals and disordered systems. Springer, New YorkGoogle Scholar
  67. 67.
    Vicsek T (1991) Fractal growth phenomena, 2nd edn. World Scientific, SingaporeGoogle Scholar
  68. 68.
    Majumdar A, Bhushan B (1990) Role of fractal geometry in roughness characterization and contact mechanics of surfaces. J Tribol 112:205–216CrossRefGoogle Scholar
  69. 69.
    Majumdar A, Tien CL (1990) Fractal characterization and simulation of rough surfaces. Wear 136:313–327CrossRefGoogle Scholar
  70. 70.
    Majumdar A, Bhushan B (1999) Characterization and modeling of surface roughness and contact mechanics. In: Bhushan B (ed) Handbook of micro/nano tribology, 2nd edn. CRC Press, New YorkGoogle Scholar
  71. 71.
    Silk T, Hong Q, Tamm J, Compton RG (1998) AFM studies of polypyrrole film surface morphology – II. Roughness characterization by the fractal dimension analysis. Synth Met 93:65–69CrossRefGoogle Scholar
  72. 72.
    Russ JC (1994) Fractal surfaces. Plenum, New YorkGoogle Scholar
  73. 73.
    Clark KC (1986) Computation of the fractal dimension of topographic surfaces using the tricangular prism surface area. Comput Geosci 12:713–722CrossRefGoogle Scholar
  74. 74.
    Liu J, Furuno T (2001) The fractal evaluation of wood texture by the triangular prism surface area method. Wood Fiber Sci 33:213–222Google Scholar
  75. 75.
    Liu J, Furuno T (2002) The fractal estimation of wood color variation by the triangular prism surface area method. Wood Sci Technol 36:385–397CrossRefGoogle Scholar
  76. 76.
    Kim CH, Pyun SI, Kim JH (2003) An investigation of the capacitance dispersion on the fractal carbon electrode with edge and basal orientations. Electrochim Acta 48:3455–3463CrossRefGoogle Scholar
  77. 77.
    Mandelbrot BB (1985) Self-affine fractals and fractal dimension. Phys Scripta 32:257–260CrossRefGoogle Scholar
  78. 78.
    Salavarezza RC, Arvia AJ (1995)  Chapter 5 A modern approach to surface roughness applied to electrochemical systems. In: Conway BE, Bockris JO’M, White RE (eds) Modern aspects of electrochemistry, vol 28. Plenum, New YorkGoogle Scholar
  79. 79.
    Lakshminarayanan V, Srinivasan R, Chu D, Gilman S (1997) Area determination in fractal surfaces of Pt and PtRu electrodes. Surf Sci 392:44–51CrossRefGoogle Scholar
  80. 80.
    Majumdar A, Bhushan B, Tien CL (1991) Role of fractal geometry in tribology. Adv Inf Storage Syst 1:231–266Google Scholar
  81. 81.
    Oden PI, Majumdar A, Bhushan B, Padmanabhan A, Graham JJ (1992) AFM imaging, roughness analysis and contact mechanics of magnetic tape and head surfaces. J Tribol 114:666–674CrossRefGoogle Scholar
  82. 82.
    Podlubny I (1999) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic, San DiegoGoogle Scholar
  83. 83.
    Le Mehaute A, Crepy G (1983) Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ion 9&10:17–30Google Scholar
  84. 84.
    Le Mehaute A (1984) Transfer processes in fractal media. J Stat Phys 36:665–676CrossRefGoogle Scholar
  85. 85.
    Nigmatullin RR (1986) The realization of the generalized transfer equation in a medium with fractal geometry. Phys Status Solidi B 133:425–430CrossRefGoogle Scholar
  86. 86.
    Wyss W (1986) The fractional diffusion equation. J Math Phys 27:2782–2785CrossRefGoogle Scholar
  87. 87.
    Schneider WR, Wyss W (1989) Fractional diffusion and wave equations. J Math Phys 30:134–144CrossRefGoogle Scholar
  88. 88.
    Mainardi F (1996) The fundamental solutions for the fractional diffusion – wave equation. Appl Math Lett 9:23–28CrossRefGoogle Scholar
  89. 89.
    Dassas Y, Duby P (1995) Diffusion toward fractal interfaces: potentiostatics, galvanostatic, and linear sweep voltammetric techniques. J Electrochem Soc 142:4175–4180CrossRefGoogle Scholar
  90. 90.
    Lee JW, Pyun SI (2005) Anomalous behaviour in diffusion impedance of intercalation electrodes. Z Metallkd 96:117–123Google Scholar
  91. 91.
    Ho C, Raistrick ID, Huggins RA (1980) Application of a-c techniques to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–349CrossRefGoogle Scholar
  92. 92.
    Jacobsen T, West K (1995) Diffusion impedance in planar, cylindrical and spherical symmetry. Electrochim Acta 40:255–262CrossRefGoogle Scholar
  93. 93.
    Ding S, Petuskey WT (1998) Solutions to Fick’s second law of diffusion with a sinusoidal excitation. Solid State Ion 109:101–110CrossRefGoogle Scholar
  94. 94.
    Diard JP, Le Gorrec B, Montella C (1999) Linear diffusion impedance. General expression and applications. J Electroanal Chem 471:126–131CrossRefGoogle Scholar
  95. 95.
    Bisquert J, Compte A (2001) Theory of the electrochemical impedance of anomalous diffusion. J Electroanal Chem 499:112–120CrossRefGoogle Scholar
  96. 96.
    Han JN, Seo M, Pyun SI (2001) Analysis of anodic current transient and beam deflection transient simultaneously measured from Pd foil electrode pre-charged with hydrogen. J Electroanal Chem 499:152–160CrossRefGoogle Scholar
  97. 97.
    Han JN, Lee JW, Seo M, Pyun SI (2001) Analysis of stresses generated during hydrogen transport through a Pd foil electrode under potential sweep conditions. J Electroanal Chem 506:1–10CrossRefGoogle Scholar
  98. 98.
    Pyun SI, Lee JW, Han JN (2002) The kinetics of hydrogen transport through Pd foil electrode in the coexistence of two hydride phases by analysis of anodic current transient. J New Mater Electrochem Syst 5:243–249Google Scholar
  99. 99.
    Lee SJ, Pyun SI, Lee JW (2005) Investigation of hydrogen transport through Mm(Ni3.6Co0.7Mn0.4Al0.3)1.12 and Zr0.65Ti0.35Ni1.2V0.4Mn0.4 hydride electrodes by analysis of anodic current transient. Electrochim Acta 50:1121–1130CrossRefGoogle Scholar
  100. 100.
    Lee JW, Pyun SI (2005) Anomalous behaviour of hydrogen extraction from hydride-forming metals and alloys under impermeable boundary conditions. Electrochim Acta 50:1777–1805CrossRefGoogle Scholar
  101. 101.
    Shin HC, Pyun SI (1999) The kinetics of lithium transport through Li1−δCoO2 by theoretical analysis of current transient. Electrochim Acta 45:489–501CrossRefGoogle Scholar
  102. 102.
    Go JY, Pyun SI, Shin HC (2002) Lithium transport through the Li1−δCoO2 film electrode prepared by rf magnetron sputtering. J Electroanal Chem 527:93–102CrossRefGoogle Scholar
  103. 103.
    Shin HC, Pyun SI (2003)  Chapter 5 Mechanisms of lithium transport through transition metal oxides and carbonaceous materials. In: Vayenas CG, Conway BE, White RE (eds) Modern aspects of electrochemistry, vol 36. Kluwer Academic/Plenum, New YorkGoogle Scholar
  104. 104.
    Lee JW, Pyun SI (2004) Investigation of lithium transport through LiMn2O4 film electrode in aqueous LiNO3 solution. Electrochim Acta 49:753–761CrossRefGoogle Scholar
  105. 105.
    de Levie R, Vogt A (1990) On the electrochemical response of rough electrodes: Part II. The transient response in the presence of slow faradaic processes. J Electroanal Chem 281:23–28CrossRefGoogle Scholar
  106. 106.
    Kant R, Rangarajan SK (1995) Diffusion to rough interfaces: finite charge transfer rates. J Electroanal Chem 396:285–301CrossRefGoogle Scholar
  107. 107.
    Lee JW, Pyun SI (2005) A study on the potentiostatic current transient and linear sweep voltammogram simulated from fractal intercalation electrode: diffusion coupled with interfacial charge transfer. Electrochim Acta 50:1947–1955CrossRefGoogle Scholar
  108. 108.
    Go JY, Pyun SI (2005) Theoretical approach to cell-impedance-controlled lithium transport through Li1−δCoO2 film electrode with fractal surface: numerical analysis of generalised diffusion equation. Electrochim Acta 50:3479–3487CrossRefGoogle Scholar
  109. 109.
    Go JY, Pyun SI, Cho SI (2005) An experimental study on cell-impedance-controlled lithium transport through Li1−δCoO2 film electrode with fractal surface by analyses of potentiostatic current transient and linear sweep voltammogram. Electrochim Acta 50:5435–5443CrossRefGoogle Scholar
  110. 110.
    Jung KN, Pyun SI (2006) Effect of pore structure on anomalous behaviour of the lithium intercalation into porous V2O5 film electrode using fractal geometry concept. Electrochim Acta 51:2646–2655CrossRefGoogle Scholar
  111. 111.
    Jung KN, Pyun SI (2006) The cell-impedance-controlled lithium transport through LiMn2O4 film electrode with fractal surface by analyses of ac-impedance spectra, potentiostatic current transient and linear sweep voltammogram. Electrochim Acta 51:4649–4658CrossRefGoogle Scholar
  112. 112.
    Lee SB, Pyun SI, Rhee CK (2003) Determination of the fractal dimensions of green MCMB and MCMB heat-treated at 800–1200°C by using gas adsorption method. Carbon 41:2446–2451CrossRefGoogle Scholar
  113. 113.
    Pajkossy T, Nyikos L (1989) Diffusion to fractal surfaces – II. Verification of theory. Electrochim Acta 34:171–179CrossRefGoogle Scholar
  114. 114.
    Lee SB, Pyun SI (2003) Determination of the morphology of surface groups formed and pvdf-binder materials dispersed on the graphite composite electrodes in terms of fractal geometry. J Electroanal Chem 556:75–82CrossRefGoogle Scholar
  115. 115.
    Strømme M, Niklasson GA, Granqvist CG (1996) Fractal surface dimension from cyclic I-V studies and atomic-force microscopy: role of noncontiguous reaction sites. Phys Rev B 54:17884–17887CrossRefGoogle Scholar
  116. 116.
    Jung KN, Pyun SI (2007) Theoretical approach to cell-impedance-controlled lithium transport through Li1−δMn2O4 film electrode with partially inactive fractal surface by analyses of potentiostatic current transient and linear sweep voltammogram. Electrochim Acta 52:2009–2017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Su-Il Pyun
    • 1
  • Heon-Cheol Shin
    • 2
  • Jong-Won Lee
    • 3
  • Joo-Young Go
    • 4
  1. 1.Dept. Materials Science & Eng. Korea Adv. Inst. of Science and Techn.Jeju National UniversityDaejeonRepublic of Korea
  2. 2.School of Materials Science & Eng.Pusan National Univ.Busan, Geumjeong-guRepublic of Korea
  3. 3.Fuel Cell Research CenterKorea Inst. of Energy ResearchDaejonRepublic of Korea
  4. 4.SB LiMotive Co., LtdGyeonggi-doRepublic of Korea

Personalised recommendations