Hydrogen Trapping Inside Metals and Metal Oxides

  • Su-Il Pyun
  • Heon-Cheol Shin
  • Jong-Won Lee
  • Joo-Young Go
Chapter
Part of the Monographs in Electrochemistry book series (MOEC)

Abstract

The anomalous behavior of hydrogen in terms of its solubility and diffusivity in metals and oxides has been the subject of repeated investigations [1–6]. The diffusion coefficients of hydrogen in metals reported in the literature have usually been determined under the assumption that the hydrogen concentration is governed by Fick’s law. Figure 5.1 summarizes some of the experimental data on the diffusivity of hydrogen reported in the literature [1]. It should be noted that small values of the diffusion coefficient were obtained for work-hardened samples (designated as curves 6). Figure 5.1 indicates that the diffusion coefficient is a function of other variables besides the temperature and that these neglected variables are in some way related to the work hardening experienced by the specimen. There are, therefore, some doubts about the validity of Fick’s law and the simple physical model of random motion through the electrode.

Keywords

Hydrogen Diffusion Current Transient Trap Site Hydrogen Transport Hydrogen Trapping 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    McNabb A, Foster PK (1963) A new analysis of the diffusion of hydrogen in iron and ferritic steels. Trans Metall Soc AIME 227:618–627Google Scholar
  2. 2.
    Bockris JOM, Subramanyan PK (1971) Hydrogen embrittlement and hydrogen traps. J Electrochem Soc 118:1114–1119CrossRefGoogle Scholar
  3. 3.
    Kumnick AJ, Johnson HH (1980) Deep trapping states for hydrogen in deformed iron. Acta Metall 28:33–39CrossRefGoogle Scholar
  4. 4.
    Riecke E, Bohnenkamp K (1984) On the influence of lattice imperfections in iron on hydrogen diffusion. Z Metallkd 75:76–81Google Scholar
  5. 5.
    McKibben R, Sharp RM, Harrington DA, Pound BG, Wright GA (1987) A potentiostatic double-step method for measuring hydrogen atom diffusion and trapping in metal electrodes – I. Theory. Acta Metall 35:253–262CrossRefGoogle Scholar
  6. 6.
    Turnbull A, Carroll MW, Ferriss DH (1989) Analysis of hydrogen diffusion and trapping in a 13 % chromium martensitic stainless steel. Acta Metall 37:2039–2046CrossRefGoogle Scholar
  7. 7.
    Krom AHM, Bakker AD (2000) Hydrogen trapping models in steel. Metall Mater Trans B 31B:1475–1482CrossRefGoogle Scholar
  8. 8.
    Darken LS, Smith RP (1949) Behavior of hydrogen in steel during and after immersion in acid. Corrosion 5:1–7Google Scholar
  9. 9.
    Oriani RA (1970) The diffusion and trapping of hydrogen in steel. Acta Metall 18:147–157CrossRefGoogle Scholar
  10. 10.
    Iino M (1982) A more generalised analysis of hydrogen trapping. Acta Metall 30:367–375CrossRefGoogle Scholar
  11. 11.
    Iino M (1982) Analysis of irreversible hydrogen trapping. Acta Metall 30:377–383CrossRefGoogle Scholar
  12. 12.
    Leblond JB, Dubois D (1983) A general mathematical description of hydrogen diffusion in steels – I. Derivation of diffusion equations from boltzmann-type transport equations. Acta Metall 31:1459–1469CrossRefGoogle Scholar
  13. 13.
    Leblond JB, Dubois D (1983) A general mathematical description of hydrogen diffusion in steels – II. Numerical study of permeation and determination of trapping parameters. Acta Metall 31:1471–1478CrossRefGoogle Scholar
  14. 14.
    Pyun SI, Yang TH (1998) Theoretical analysis of hydrogen transport through an electrode at the coexistence of two hydrogen-poor and –rich phases based upon the concept of hydrogen trapping. J Electroanal Chem 441:183–189CrossRefGoogle Scholar
  15. 15.
    Lee JW, Pyun SI (2005) Anomalous behaviour of hydrogen extraction from hydride-forming metals and alloys under impermeable boundary conditions. Electrochim Acta 50:1777–1850CrossRefGoogle Scholar
  16. 16.
    Yang TH, Pyun SI, Yoon YG (1997) Hydrogen transport through Pd electrode: current transient analysis. Electrochim Acta 42:1701–1708CrossRefGoogle Scholar
  17. 17.
    Yoon YG, Pyun SI (1997) Hydrogen transport through nickel hydroxide film: current transient analysis. Electrochim Acta 42:2465–2474CrossRefGoogle Scholar
  18. 18.
    Lim C, Pyun SI (1993) Theoretical approach to faradaic admittance of hydrogen absorption reaction on metal membrane electrode. Electrochim Acta 38:2645–2652CrossRefGoogle Scholar
  19. 19.
    Lim C, Pyun SI (1994) Impedance analysis of hydrogen absorption reaction on Pd membrane electrode in 0.1 M LiOH solution under permeable boundary conditions. Electrochim Acta 39:363–373CrossRefGoogle Scholar
  20. 20.
    Zhang W, Sridhar Kumar MP, Srinivasan S (1995) Ac impedance studies on metal hydride electrodes. J Electrochem Soc 142:2935–2943CrossRefGoogle Scholar
  21. 21.
    Yang TH, Pyun SI (1996) Hydrogen absorption and diffusion into and in palladium: ac-impedance analysis under impermeable boundary conditions. Electrochim Acta 41:843–848CrossRefGoogle Scholar
  22. 22.
    Yang TH, Pyun SI (1996) A study of hydrogen absorption reaction into α- and β-LaNi5Hx porous electrodes by using electrochemical impedance spectroscopy. J Power Sources 62:175–178CrossRefGoogle Scholar
  23. 23.
    Wang C (1998) Kinetic behavior of metal hydride electrode by means of ac impedance. J Electrochem Soc 145:1801–1812CrossRefGoogle Scholar
  24. 24.
    Montella C (1999) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion I. Diffusion formalism. J Electroanal Chem 462:73–87CrossRefGoogle Scholar
  25. 25.
    Montella C (2000) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion: part II. Entry side impedance, transfer function and transfer impedance formalism. J Electroanal Chem 480:150–165CrossRefGoogle Scholar
  26. 26.
    Montella C (2000) Review and theoretical analysis of ac–av methods for the investigation of hydrogen insertion: part III. Comparison of entry side impedance, transfer function and transfer impedance methods. J Electroanal Chem 480:166–185CrossRefGoogle Scholar
  27. 27.
    Yuan X, Xu N (2002) Electrochemical and hydrogen transport kinetic performance of MlNi3.75Co0.65Mn0.4Al0.2 metal hydride electrodes at various temperatures. J Electrochem Soc 149:A407–A413CrossRefGoogle Scholar
  28. 28.
    Georén P, Hjelm AK, Lindbergh G, Lundqvist A (2003) An electrochemical impedance spectroscopy method applied to porous LiMn2O4 and metal hydride battery electrodes. J Electrochem Soc 150:A234–A241CrossRefGoogle Scholar
  29. 29.
    Ho C, Raistrick ID, Huggins RA (1980) Application of a-c technique to the study of lithium diffusion in tungsten trioxide thin films. J Electrochem Soc 127:343–350CrossRefGoogle Scholar
  30. 30.
    Cabanel R, Barral G, Diard JP, Gorrec B, Montella C (1993) Determination of the diffusion coefficient of an inserted species by impedance spectroscopy: application to the H/HxNb2O5 system. J Appl Electrochem 23:93–97CrossRefGoogle Scholar
  31. 31.
    Macdonald JR (1987) Impedance spectroscopy. Wiley, New YorkGoogle Scholar
  32. 32.
    Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulhoes LOS (1998) Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J Electroanal Chem 452:229–234CrossRefGoogle Scholar
  33. 33.
    Bisquert J, Compte A (2001) Theory of the electrochemical impedance of anomalous diffusion. J Electroanal Chem 499:112–120CrossRefGoogle Scholar
  34. 34.
    Bisquert J (2002) Analysis of the kinetics of ion intercalation: ion trapping approach to solid-state relaxation processes. Electrochim Acta 47:2435–2449CrossRefGoogle Scholar
  35. 35.
    Bisquert J, Vikhrenko VS (2002) Analysis of the kinetics of ion intercalation: two state model describing the coupling of solid state ion diffusion and ion binding processes. Electrochim Acta 47:3977–3988CrossRefGoogle Scholar
  36. 36.
    Bisquert J, Garcia-Belmonte G, Pitarch A (2003) An explanation of anomalous diffusion patterns observed in electroactive materials by impedance methods. Chemphyschem 3:287–292CrossRefGoogle Scholar
  37. 37.
    Lee JW, Pyun SI (2005) Anomalous behaviour in diffusion impedance of intercalation electrodes. Z Metallkd 96:117–123Google Scholar
  38. 38.
    Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Ferriols NS, Bueno PR, Longo E, Anton JS, Castro-Garcia S (2001) Dynamic processes in the coloration of WO3 by lithium insertion. J Electrochem Soc 148:E302–E309CrossRefGoogle Scholar
  39. 39.
    Bohnke O, Rezrazi M, Vuillemin B, Bohnke C, Gillet PA, Rousselot C (1992) “In situ” optical and electrochemical characterization of electrochromic phenomena into tungsten trioxide thin films. Solar Energy Mat Solar Cells 25:361–374CrossRefGoogle Scholar
  40. 40.
    Vuillemin B, Bohnke O (1994) Kinetics study and modelling of the electrochromic phenomenon in amorphous tungsten trioxide thin films in acid and lithium electrolytes. Solid State Ion 68:257–267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Su-Il Pyun
    • 1
  • Heon-Cheol Shin
    • 2
  • Jong-Won Lee
    • 3
  • Joo-Young Go
    • 4
  1. 1.Dept. Materials Science & Eng. Korea Adv. Inst. of Science and Techn.Jeju National UniversityDaejeonRepublic of Korea
  2. 2.School of Materials Science & Eng.Pusan National Univ.Busan, Geumjeong-guRepublic of Korea
  3. 3.Fuel Cell Research CenterKorea Inst. of Energy ResearchDaejonRepublic of Korea
  4. 4.SB LiMotive Co., LtdGyeonggi-doRepublic of Korea

Personalised recommendations