Evidential Network with Conditional Belief Functions for an Adaptive Training in Informed Virtual Environment

  • Loïc Fricoteaux
  • Indira Thouvenin
  • Jérôme Olive
  • Paul George
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 164)


Simulators have been used for many years to learn driving, piloting, steering, etc. but they often provide the same training for each learner, no matter his/her performance. In this paper, we present the GULLIVER system, which determines the most appropriate aids to display for learner guiding in a fluvial-navigation training simulator. GULLIVER is a decision-making system based on an evidential network with conditional belief functions. This evidential network allows graphically representing inference rules on uncertain data coming from learner observation. Several sensors and a predictive model are used to collect these data about learner performance. Then the evidential network is used to infer in real time the best guiding to display to learner in informed virtual environment.


Virtual Reality Virtual Environment Augmented Reality Belief Function Conditional Belief 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Amokrane, K., Lourdeaux, D., Burkhardt, J.M.: HERA: Learner Tracking in a Virtual Environment. International Journal of Virtual Reality 7(3), 23–30 (2008)Google Scholar
  2. 2.
    Ben Yaghlane, B., Mellouli, K.: Inference in directed evidential networks based on the transferable belief model. International Journal of Approximate Reasoning 48(2), 399–418 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Buche, C., Bossard, C., Querrec, R., Chevaillier, P.: PEGASE: A Generic and Adaptable Intelligent System for Virtual Reality Learning Environments. International Journal of Virtual Reality 9(2), 73–85 (2010)Google Scholar
  4. 4.
    Flipo, A.: TRUST: the Truck Simulator for Training. In: Driving Simulation Conference, Paris, France, 208–220 (2000)Google Scholar
  5. 5.
    Mercier, D., Quost, B., Denoeux, T.: Refined modeling of sensor reliability in the belief function framework using contextual discounting. Information Fusion 9(2), 246–258 (2008)CrossRefGoogle Scholar
  6. 6.
    Mufti-Alchawafa, D.: Modélisation et représentation de la connaissance pour la conception d’un systéme décisionnel dans un environnement informatique d’apprentissage en chirurgie. PhD thesis, Université Joseph Fourier - Grenoble I (2008)Google Scholar
  7. 7.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)Google Scholar
  8. 8.
    Ramasso, E., Rombaut, M., Pellerin, D.: Modéle des Croyances Transférables: Représentation des connaissances, Fusion d’informations, Décision. Technical report (2007)Google Scholar
  9. 9.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)Google Scholar
  10. 10.
    Shenoy, P.P.: Using Dempster-Shafer’s belief-function theory in expert systems. In: Advances in the Dempster-Shafer theory of evidence, pp. 395–414. John Wiley & Sons (1994)Google Scholar
  11. 11.
    Smets, P.: Belief functions: The disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9(1), 1–35 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66(2) (1994)Google Scholar
  13. 13.
    Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38(2), 133–147 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Smets, P.: Analyzing the combination of conflicting belief functions. Information Fusion 8(4), 387–412 (2007)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Xu, H., Smets, P.: Evidential Reasoning with Conditional Belief Functions. In: Uncertainty in Artificial Intelligence, San Francisco, CA, pp. 598–605 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Loïc Fricoteaux
    • 1
  • Indira Thouvenin
    • 1
  • Jérôme Olive
    • 1
  • Paul George
    • 1
  1. 1.Heudiasyc Laboratory UMR CNRS 6599CompiégneFrance

Personalised recommendations