Map-Aided Fusion Using Evidential Grids for Mobile Perception in Urban Environment

  • Marek Kurdej
  • Julien Moras
  • Véronique Cherfaoui
  • Philippe Bonnifait
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 164)


Evidential grids have been recently used for mobile object perception. The novelty of this article is to propose a perception scheme using prior map knowledge. A geographic map is considered an additional source of information fused with a grid representing sensor data. Yager’s rule is adapted to exploit the Dempster- Shafer conflict information at large. In order to distinguish stationary and mobile objects, a counter is introduced and used as a factor for mass function specialisation. Contextual discounting is used, since we assume that different pieces of information become obsolete at different rates. Tests on real-world data are also presented.


Mass Function Fusion Rule Belief Function Mobile Object Occupancy Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cappelle, C., et al.: Virtual 3D City Model for Navigation in Urban Areas. J. Intell. Robot. Syst. (2011)Google Scholar
  2. 2.
    Elfes, A.: Using Occupancy Grids for Mobile Robot Perception and Navigation. Computer 22(6), 46–57 (1989)CrossRefGoogle Scholar
  3. 3.
    Mercier, D., Quost, B., Denoeux, T.: Refined modeling of sensor reliability in the belief function framework using contextual discounting. J. Inf. Fusion 9(2), 246–258 (2008)CrossRefGoogle Scholar
  4. 4.
    Moras, J., Cherfaoui, V., Bonnifait, P.: Credibilist Occupancy Grids for Vehicle Perception in Dynamic Environments. In: IEEE Int. Conf. Robot. Autom., pp. 84–89 (2011)Google Scholar
  5. 5.
    Moras, J., Cherfaoui, V., Bonnifait, P.: Moving Objects Detection by Conflict Analysis in Evidential Grids. In: Int. Veh. Symp., Baden-Baden, Germany, pp. 1120–1125 (2011)Google Scholar
  6. 6.
    OpenStreetMap project, (Cited November 9, 2011)
  7. 7.
    Pagac, D., Nebot, E.M., Durrant-Whyte, H.: An evidential approach to map-building for autonomous vehicles. IEEE Trans. Robot. Autom. 14(4), 623–629 (1998)CrossRefGoogle Scholar
  8. 8.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)Google Scholar
  9. 9.
    Smets, P.: Decision making in the tbm: the necessity of the pignistic transformation. Int. J. Approx. Reason. 38(2), 133–147 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Yager, R.R.: On the Dempster-Shafer framework and new combination rules. Information sciences 4, 93–138 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marek Kurdej
    • 1
  • Julien Moras
    • 1
  • Véronique Cherfaoui
    • 1
  • Philippe Bonnifait
    • 1
  1. 1.UMR CNRS 6599 HeudiasycUniversity of Technology of CompiégneCompiégneFrance

Personalised recommendations