Hierarchical Proportional Redistribution for bba Approximation

  • Jean Dezert
  • Deqiang Han
  • Zhunga Liu
  • Jean-Marc Tacnet
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 164)


Dempster’s rule of combination is commonly used in the field of information fusion when dealing with belief functions. However, it generally requires a high computational cost. To reduce it, a basic belief assignment (bba) approximation is needed. In this paper we present a new bba approximation approach called hierarchical proportional redistribution (HPR) allowing to approximate a bba at any given level of non-specificity. Two examples are given to show how our new HPR works.


High Computational Cost Information Fusion Belief Function Evidence Theory Outer Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barnett, J.A.: Computational methods for a mathematical theory of evidence. In: Proceedings of IJCAI 1981, Vancouver, pp. 868–875 (1981)Google Scholar
  2. 2.
    Burger, T., Cuzzolin, F.: The barycenters of the k-additive dominating belief functions and the pignistic k-additive belief functions. In: Workshop on Theory of Belief Functions, Brest, France, pp. 1–6 (2010)Google Scholar
  3. 3.
    Denœux, T.: Inner and outer approximation of belief structures using a hierarchical clustering approach. International Journal of Uncertainty, Fuzziness, and Knowledge-based Systems 9, 437–460 (2001)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dubois, D., Prade, H.: A note on measures of specificity for fuzzy sets. International Journal of General Systems 10, 279–283 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Dubois, D., Prade, H.: An alternative approach to the handling of subnormal possiblity distributions. Fuzzy Sets and Systems 24, 123–126 (1987)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Grabisch, M.: Upper approximation of non-additive measures by k-additive measures - the case of belief functions. In: Proc. of the 1st Int. Symposium on Imprecise Probabilities and Their Applications, Ghent, Belgium (1999)Google Scholar
  7. 7.
    Jousselme, A.-L., Maupin, P.: Distances in evidence theory: Comprehensive survey and generalizations. International Journal of Approximate Reasoning 53, 118–145 (2011)CrossRefGoogle Scholar
  8. 8.
    Kennes, R.: Computational aspects of the M\(\ddot{o}\)bius transform of graphs. IEEE Transactions on SMC 22, 201–223 (1992)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Moral, S., Salmerón, A.: A Monte Carlo Algorithm for Combining Dempster-Shafer Belief Based on Approximate Pre-computation. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 305–315. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  10. 10.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University, Princeton (1976)zbMATHGoogle Scholar
  11. 11.
    Smets, P.: Practical uses of belief functions. In: Lskey, K.B., Prade, H. (eds.) Uncertainty in Artificial Intelligence 15 (UAI 1999), Stockholm, Sweden, pp. 612–621 (1999)Google Scholar
  12. 12.
    Tessem, B.: Approximations for efficient computation in the theory of evidence. Artificial Intelligence 61, 315–329 (1993)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Voorbraak, F.: A computationally efficient approximation of Dempster-Shafer theory. Int. J. Man-Machine Studies 30, 525–536 (1989)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jean Dezert
    • 1
  • Deqiang Han
    • 2
  • Zhunga Liu
    • 3
  • Jean-Marc Tacnet
    • 4
  1. 1.The French Aerospace LabPalaiseauFrance
  2. 2.Inst. of Integrated AutomationXi’an Jiaotong UniversityXi’anChina
  3. 3.School of AutomationNorth-Western Polytechnical UniversityXi’anChina
  4. 4.Irstea, UR ETGRSt-Martin-d’HèresFrance

Personalised recommendations