Advertisement

About Sources Dependence in the Theory of Belief Functions

  • Mouna Chebbah
  • Arnaud Martin
  • Boutheina Ben Yaghlane
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 164)

Abstract

In the theory of belief functions many combination rules are proposed in the purpose of merging and confronting several sources opinions. Some combination rules are used when sources are cognitively independent whereas others are specific to dependent sources. In this paper, we suggest a method to quantify sources degrees of dependence in order to choose the more appropriate combination rule. We used generated mass functions to test the proposed method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben Yaghlane, B., Smets, P., Mellouli, K.: Belief function independence: I. The marginal case. International Journal Approximate Reasoning 29(1), 47–70 (2002)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Ben Yaghlane, B., Smets, P., Mellouli, K.: Belief function independence: II. The conditional case. International Journal Approximate Reasoning 31(1-2), 31–75 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ben Hariz, S., Elouedi, Z., Mellouli, K.: Clustering Approach Using Belief Function Theory. In: Euzenat, J., Domingue, J. (eds.) AIMSA 2006. LNCS (LNAI), vol. 4183, pp. 162–171. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Dempster, A.P.: Upper and Lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Denoeux, T.: The cautious rule of combination for belief functions and some extensions. In: Proceedings of the Ninth International Conference on Information Fusion (FUSION 2006), Florence, Italy (2006)Google Scholar
  6. 6.
    Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence 4, 244–264 (1988)CrossRefGoogle Scholar
  7. 7.
    Martin, A., Osswald, C.: Toward a combination rule to deal with partial conflict and specificity in belief functions theory. In: Int. Conf. on Information Fusion, Québec, Canada (2007)Google Scholar
  8. 8.
    Jousselme, A.-L., Grenier, D., Bossé, E.: A new distance between two bodies of evidence. Information Fusion 2, 91–101 (2001)CrossRefGoogle Scholar
  9. 9.
    Murphy, C.K.: Combining belief functions when evidence conflicts. Decision Support Systems 29, 1–9 (2000)CrossRefGoogle Scholar
  10. 10.
    Smets, P., Kennes, R.: The Transferable Belief Model. Artificial Intelligent 66, 191–234 (1994)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Smets, P.: Belief Functions: The Disjunctive Rule of Combination and the Generalized Bayesian Theorem. Classic Works of the Dempster-Shafer Theory of Belief Functions, 633–664 (2008)Google Scholar
  12. 12.
    Shafer, G.: A mathematical theory of evidence. Princeton University Press (1976)Google Scholar
  13. 13.
    Yager, R.R.: On the Dempster-Shafer Framework and New Combination Rules. Information Sciences 41, 93–137 (1987)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mouna Chebbah
    • 1
    • 2
  • Arnaud Martin
    • 2
  • Boutheina Ben Yaghlane
    • 3
  1. 1.LARODEC LaboratoryISG TunisCité BouchouchaTunisia
  2. 2.IRISA, University of Rennes 1LannionFrance
  3. 3.LARODEC LaboratoryIHEC CarthageCarthage PrésidenceTunisia

Personalised recommendations