Facial Expression Classification Based on Dempster-Shafer Theory of Evidence

  • Mohammad Shoyaib
  • M. Abdullah-Al-Wadud
  • S. M. Zahid Ishraque
  • Oksam Chae
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 164)


Facial expression recognition is a well discussed problem. Several machine learning methods are used in this regard. Among them, Adaboost is popular for its simplicity and considerable accuracy. In Adaboost, decisions are made based on the weighted majority vote of several weak classifiers. However, such weighted combination may not give expected accuracy due to the lack of proper uncertainty management. In this paper, we propose to adopt the Dempster Shafer theory (DST) of Evidence based solution where mass values are calculated from k-nearest neighboring feature information based on some distance metric, and combined together using DST. Experiments on a renowned dataset demonstrate the effectiveness of the proposed method.


Facial Expression Expression Recognition Facial Expression Recognition Weak Classifier Dempster Shafer Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face Recognition with Local Binary Patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part I. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Bacivarov, I., Corcoran, P., Ionita, M.: Smart cameras: 2D affine models for determining subject facial expressions. IEEE Trans. on Consumer Electronics 56(2) (2010)Google Scholar
  3. 3.
    Denoeux, T.: A k-nearest neighbor classification rule based on Dempster–Shafer theory. IEEE Transactions on Systems, Man and Cybernetics 25(05), 804–813 (1995)CrossRefGoogle Scholar
  4. 4.
    Denoeux, T.: A neural network classifier based on Dempster-Shafer theory. IEEE Transactions on Systems, Man and Cybernetics A 30(2), 131–150 (2000)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ekman, P.: Facial expressions. In: Dalgleish, T., Power, M. (eds.) Handbook of Cognition and Emotion, pp. 301–320. Wiley, New York (1999)Google Scholar
  6. 6.
    Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. In: Proc. of the European Conference on Computational Learning Theory, Euro-COLT (1995)Google Scholar
  7. 7.
    Hammal, Z., Couvreur, L., Caplier, A., Rombaut, M.: Facial expression classification: An approach based on the fusion of facial deformations using the transferable belief model. International Journal of Approximate Reasoning 46(3), 542–567 (2007)CrossRefGoogle Scholar
  8. 8.
    Jung, S.U., Kim, D.H., An, K.H., Chung, M.J.: Efficient rectangle feature extraction for real-time facial expression recognition based on adaboost. In: IEEE/RSJ International Conference on Intelligent Robotics and Systems, IROS (2005)Google Scholar
  9. 9.
    Kanade, T., Cohn, J., Tian, Y.: Comprehensive database for facial expression analysis. In: Proc. of IEEE Inter. Conference on Automatic Face & Gesture Recognition, pp. 46–53 (2000)Google Scholar
  10. 10.
    Kotsia, I., Pitas, I.: Facial expression recognition in image sequences using geometric deformation features and support vector machines. IEEE Trans. Image Processing 16(1), 172–187 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Littlewort, G., Bartlett, M.S., Fasel, I., Susskind, J., Movellan, J.: Dynamics of facial expression extracted automatically from video. Image and Vision Comp. 24, 615–625 (2006)CrossRefGoogle Scholar
  12. 12.
    Ojala, T., Pietikainen, M., Maenpaa, T.T.: Multiresolution gray-scale and rotation invariant texture classification with local binary pattern. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)CrossRefGoogle Scholar
  13. 13.
    Pantic, M., Patras, I.: Dynamics of facial expressions—recognition of facial actions and their temporal segments from face profile image sequences. IEEE Trans. Systems, Man, and Cybernetics. 36(2), 433–449 (2006)CrossRefGoogle Scholar
  14. 14.
    Peng, Y., Qingshan, L., Metaxas, D.N.: Boosting Coded Dynamic Features for Facial Action Units and Facial Expression Recognition. In: CVPR 2007, pp. 1–6 (2007)Google Scholar
  15. 15.
    Shafer, G.: A Mathematical Theory of Evidence. P.U. Press, Princeton (1976)zbMATHGoogle Scholar
  16. 16.
    Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image and Vision Computing 27(6), 803–816 (2009)CrossRefGoogle Scholar
  17. 17.
    Smets, P.: Decision Making in the TBM: the Necessity of the Pignistic Transformation. Int. J. Approximate Reasoning 38, 133–147 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Xiao, R., Zhao, Q., Zhang, D., Shi, P.: Facial expression recognition on multiple manifolds. Pattern Recognition 44, 107–116 (2011)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohammad Shoyaib
    • 1
  • M. Abdullah-Al-Wadud
    • 2
  • S. M. Zahid Ishraque
    • 1
  • Oksam Chae
    • 1
  1. 1.Kyung Hee UniversityYonginKorea
  2. 2.Hankuk University of Foreign StudiesYonginKorea

Personalised recommendations