Advertisement

Using Belief Function Theory to Deal with Uncertainties and Imprecisions in Image Processing

  • Benoît Lelandais
  • Isabelle Gardin
  • Laurent Mouchard
  • Pierre Vera
  • Su Ruan
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 164)

Abstract

In imaging, physical phenomena and acquisition system often induce an alteration of the information. It results in the presence of noise and partial volume effect corresponding respectively to uncertainties and imprecisions. To cope with these different imperfections, we propose a method based on information fusion using Belief function theory. First, it takes advantage of neighborhood information and combination rules on mono-modal images in order to reduce uncertainties due to noise while considering imprecisions due to partial volume effect on disjunctions. Imprecisions are then reduced using information coming from multi-modal images. Results obtained on simulated images using various signal to noise ratio and medical images show its ability to segment multi-modal images having both noise and partial volume effect.

Keywords

Recognition Rate Partial Volume Effect Information Fusion Simulated Image Imprecise Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 225–339 (1967)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  3. 3.
    Smets, P., Kennes, R.: The Transferable Belief Model. Artif. Intell. 66, 191–234 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Capelle, A.S., Colot, O., Fernandez-Maloigne, C.: Evidential segmentation scheme of multi-echo MR images for the detection of brain tumors using neighborhood information. Inf. Fusion 5(3), 203–216 (2004)CrossRefGoogle Scholar
  5. 5.
    Zhang, P., Gardin, I., Vannoorenberghe, P.: Information fusion using evidence theory for segmentation of medical images. In: Int. Colloq. on Inf. Fusion, vol. 1, pp. 265–272 (2007)Google Scholar
  6. 6.
    Bloch, I.: Defining belief functions using mathematical morphology - Application to image fusion under imprecision. Int. J of Approx. Reason. 48(2), 437–465 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)zbMATHGoogle Scholar
  8. 8.
    Gould, M.K., Kuschner, W.G., Rydzak, C.E., et al.: Test performance of positron emission tomography and computed tomography for mediastinal staging in patients with non-small-cell lung cancer: a meta-analysis. Ann. Int. Med. 139, 879–892 (2003)Google Scholar
  9. 9.
    Xu, B., Guan, Z., Liu, C., et al.: Can multimodality imaging using 18F-FDG/18F-FLT PET/CT benefit the diagnosis and management of patients with pulmonary lesions? Eur. J. Nucl. Med. Mol. Imaging 38(2), 285–292 (2011)CrossRefGoogle Scholar
  10. 10.
    Choi, W., Lee, S.W., Park, S.H., et al.: Planning study for available dose of hypoxic tumor volume using fluorine-18-labeled fluoromisonidazole positron emission tomography for treatment of the head and neck cancer. Radiother. Oncol. 97(2), 176–182 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Benoît Lelandais
    • 1
  • Isabelle Gardin
    • 2
    • 1
  • Laurent Mouchard
    • 1
  • Pierre Vera
    • 2
    • 1
  • Su Ruan
    • 1
  1. 1.LITIS EA 4108 - QuantIFUniversity of RouenRouenFrance
  2. 2.Department of nuclear medicineCentre Henri-BecquerelRouenFrance

Personalised recommendations