Revisiting the Notion of Conflicting Belief Functions

Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 164)


The problem of conflict measurement between information sources knows a regain of interest. In most works related to this issue, Dempter’s rule plays a central role. In this paper, we propose to revisit conflict from a different perspective. We do not make a priori assumption about dependencies and start from the definition of conflicting sets, studying its possible extensions to the framework of belief functions.


Consistency Fusion Contour Function Dependence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smets, P.: Analyzing the combination of conflicting belief functions. Information Fusion 8, 387–412 (2006)CrossRefGoogle Scholar
  2. 2.
    Liu, W.: Analyzing the degree of conflict among belief functions. Artif. Intell. 170(11), 909–924 (2006)MATHCrossRefGoogle Scholar
  3. 3.
    Daniel, M.: Conflicts within and between Belief Functions. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 696–705. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Shafer, G.: A mathematical Theory of Evidence. Princeton University Press, New Jersey (1976)MATHGoogle Scholar
  5. 5.
    Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Destercke, S., Dubois, D.: Idempotent conjunctive combination of belief functions: Extending the minimum rule of possibility theory. Information Sciences 181(18), 3925 (2011), doi:10.1016/j.ins.2011.05.007MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cuzzolin, F.: On Consistent Approximations of Belief Functions in the Mass Space. In: Liu, W. (ed.) ECSQARU 2011. LNCS, vol. 6717, pp. 287–298. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  9. 9.
    Cattaneo, M.: Combining belief functions issued from dependent sources. In: Proc. Third International Symposium on Imprecise Probabilities and Their Application (ISIPTA 2003), Lugano, Switzerland, pp. 133–147 (2003)Google Scholar
  10. 10.
    Dubois, D., Prade, H.: Possibility theory and data fusion in poorly informed environments. Control Eng. Practice 2, 811–823 (1994)CrossRefGoogle Scholar
  11. 11.
    Martin, A., Jousselme, A.-L., Osswald, C.: Conflict measure for the discounting operation on belief functions. In: The 11th International Conference on Information Fusion, pp. 1003–1010 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CNRS, UMR HeudiasycCentre de recherche de RoyallieuCompiegneFrance
  2. 2.CNRS (FR3425)CEA (iRTSV/BGE), INSERM (EDyP, U1038)GrenobleFrance

Personalised recommendations