On Belief Functions and Random Sets

  • Hung T. Nguyen
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 164)

Abstract

We look back at how axiomatic belief functions were viewed as distributions of random sets, and address the problem of joint belief functions in terms of copulas. We outline the axiomatic development of belief functions in the setting of incidence algebras, and some aspects of decision-making with belief functions.

Keywords

Probability Measure Polish Space Belief Function Maximum Entropy Principle Excess Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Probability 38, 325–339 (1967)MathSciNetMATHGoogle Scholar
  2. 2.
    Dubois, D., Prade, H.: A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. Intern. J. General Systems 12, 193–226 (1986)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Gierz, G., Hofman, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: A Compendium of Continuous Lattices. Springer (1980)Google Scholar
  4. 4.
    Goodman, I.R.: Fuzzy sets as equivalence classes of random sets. In: Yager, R. (ed.) Fuzzy Sets and Possibility Theory, pp. 327–343 (1982)Google Scholar
  5. 5.
    Hajek, K.: Sampling from a Finite Population. Marcel Dekker, New York (1981)MATHGoogle Scholar
  6. 6.
    Hartigan, J.A.: Estimation of a convex densoty contour in two dimensions. JASA 82, 267–270 (1987)MathSciNetMATHGoogle Scholar
  7. 7.
    Jaffray, J.Y.: On the maximum of conditional entropy for upper/lower probabilities generated by random sets. In: Goutsias, J., et al. (eds.) Random Sets: Theory and Applications, pp. 107–127. Springer (1997)Google Scholar
  8. 8.
    Hartigan, J.A.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620–630 (1957)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Marinacci, M.: Decomposition and representation of coalitional games. Math. Oper. Res. 21, 1000–1015 (1996)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Matheron, G.: Random Sets and Integral Geometry. John Wiley (1975)Google Scholar
  11. 11.
    Meyerowitz, A., Richman, F., Walker, E.A.: Calculating maximum entropy probability densities for belief functions. Intern. J. Uncertainty, Fuzziness and Knowledge-Based Systems 2, 377–390 (1994)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Molchanov, I.: Theory of Random Sets. Springer (2005)Google Scholar
  13. 13.
    Molchanov, I.: An Introduction to Copulas. LNCS. Springer (1999)Google Scholar
  14. 14.
    Nguyen, H.T.: On random sets and belief functions. J. Math. Anal. Appl. 65, 531–542 (1978); reprinted in Yager, R., Liu, L. (eds.): Classical Works of the Dempster-Shafer Theory of belief Functions, pp. 105–116. Springer (2008) MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Nguyen, H.T.: On the entropy of random sets and possibility distributions. In: Bezdek, J. (ed.) The Analysis of Fuzzy Information, pp. 145–156. CRC Press (1987)Google Scholar
  16. 16.
    Nguyen, H.T., Walker, E.A.: On decision -making using belief functions. In: Yager, R., et al. (eds.) Advances in the Dempster-Shafer Theory of Evidence, pp. 312–330. John Wiley (1994)Google Scholar
  17. 17.
    Nguyen, H.T., Nguyen, N.T.: A negative version of Choquet theorem for Polish spaces. East- West J. Math. 1, 61–71 (1998)MathSciNetMATHGoogle Scholar
  18. 18.
    Nguyen, H.T., Kreinovich, V.: How to divide a territory? A new simple differential formalism for optimization of set-functions. Intern. J. Intell. Systems 14, 223–251 (1999)MATHCrossRefGoogle Scholar
  19. 19.
    Nguyen, H.T., Walker, E.A.: A First Course in Fuzzy Logic, 3rd edn. Chapman and Hall/CRC (2006)Google Scholar
  20. 20.
    Nguyen, H.T.: An Introduction to Random Sets. Chapman and Hall/CRC (2006)Google Scholar
  21. 21.
    Nguyen, H.T., Tran, H.: On a continuous lattice approach to modeling of coarse data in system analysis. J. Uncertain Systems 1(1), 62–73 (2007)Google Scholar
  22. 22.
    Robbins, H.E.: On the measure of a random set. Ann. Math. Statist. 14, 70–74 (1944)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Scarsini, M.: Copulae of probability measures on product spaces. J. Multi. Anal. 31, 201–219 (1989)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Scarsini, M.: Copulae of capacities on product spaces. In: Distributions with Fixed Marginals and Related Topics. IMS Lecture Notes, vol. 28, pp. 307–318 (1996)Google Scholar
  25. 25.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton Univ. Press (1976)Google Scholar
  26. 26.
    Sklar, A.: Fonctions de repartition a n dimensions et leur marges. Publ. Inst. Statist. Univ. Paris 8, 229–231 (1959)MathSciNetGoogle Scholar
  27. 27.
    Sriboonchitta, S., Wong, W.K., Dhompongsa, S., Nguyen, H.T.: Stochastic Dominance and Applications to Finance, Risk and Economics. Chapman and Hall/CRC (2010)Google Scholar
  28. 28.
    Suppes, P., Zanotti, A.: On using random relations to generate upper and lower probabilities. Synthese 36, 427–440 (1977)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Wasserman, L.A.: A Some Applications of Belief Functions to Statistical Inference. Ph.D. Thesis, University of Toronto, Canada (1987)Google Scholar
  30. 30.
    Yager, R.: Entropy and specificity in a mathematical theory of evidence. Intern. J. General Systems 9(4), 249–269 (1983)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hung T. Nguyen
    • 1
    • 2
  1. 1.New Mexico State UniversityAlbuquerqueUSA
  2. 2.Chiang Mai UniversityChiang MaiThailand

Personalised recommendations