Advertisement

Boolean Formulas of Simple Conceptual Graphs (\(\mathcal{SGBF}\))

  • Olivier Carloni
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7205)

Abstract

This paper presents a conceptual graph formalism called simple graph boolean formulas that extends the \(\mathcal{SG}\) with boolean connectors. This formalism is used to define categories of objects in a classification service that can be turned into a legal content management system. We define the \(\mathcal{SGBF}\) of graph boolean formulas, present two decidable fragments of this formalism (relying on the first order logic BSR and guarded fragments), and describe the functional architecture of a generic classification service that can be used in the legal domain.

Keywords

Simple Graph Logical Formula Relational Support Boolean Formula Conceptual Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andréka, H., Nemeti, I., van Benthem, J.: Modal languages and bounded fragments of predicate logic 27, 217–274 (1998)Google Scholar
  2. 2.
    Baader, F., Molitor, R., Tobies, S.: The guarded fragment of conceptual graphs. Technical report, RWTH Aachen, LuFg Theoretische Informatik (1998)Google Scholar
  3. 3.
    Baget, J.-F., Mugnier, M.-L.: Extensions of Simple Conceptual Graphs: The Complexity of Rules and Constraints. JAIR 16, 425–465 (2002)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Carloni, O., Leclère, M., Mugnier, M.-L.: Introducing graph-based reasoning into an industrial knowledge management tool. Applied Intelligence (2007)Google Scholar
  5. 5.
    Chein, M., Mugnier, M.-L.: Conceptual Graphs: Fundamental Notions. Revue d’Intelligence Artificielle 6(4), 365–406 (1992)Google Scholar
  6. 6.
    Grädel, E.: On the restraining power of guards. Journal of Symbolic Logic 64, 1719–1742 (1998)Google Scholar
  7. 7.
    Sowa, J.F.: Conceptual Graphs for a Data Base Interface. IBM Journal of Research and Development 20, 336–357 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine. Addison-Wesley (1984)Google Scholar
  9. 9.
    Sowa, J.F., Way, E.C.: Implementing a Semantic Interpreter Using Conceptual Graphs. IBM Journal of Research and Development 30, 57–69 (1986)CrossRefGoogle Scholar
  10. 10.
    Salvat, E., Mugnier, M.-L.: Sound and Complete Forward and Backward Chainingd of Graph Rules. In: Eklund, P., Mann, G.A., Ellis, G. (eds.) ICCS 1996. LNCS, vol. 1115, pp. 248–262. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  11. 11.
    Bernays, P., Schönfinkel, M.: Zum Entscheidungsproblem der mathematischen Logik. Math. Annalen 99, 342–372 (1928)zbMATHCrossRefGoogle Scholar
  12. 12.
    Ramsey, F.: On a problem of formal logic. Proc. of the London Math. Soc. 2nd Series 30, 264–286 (1930)CrossRefGoogle Scholar
  13. 13.
    Schulz, S.: A comparison of different techniques for grounding near propositional CNF formulae. In: FLAIRS 2002: Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference, pp. 72–76. AAAI Press (2002)Google Scholar
  14. 14.
    Claessen, K., Sörensson, N.: New techniques that improve MACE-style model finding. In: MODEL 2003: Proceedings of the Workshop on Model Computation (2003)Google Scholar
  15. 15.
    Fuchs, A.: Darwin: A theorem prover for the model evolution calculus. Master’s thesis, University of Koblenz-Landau (2004)Google Scholar
  16. 16.
    Korovin, K.: Implementing an instantiation-based theorem prover for first-order logic. In: IWIL 2006: Proceedings of the 6th International Workshop on the Implementation of Logics (2006)Google Scholar
  17. 17.
    Baumgartner, P.: FDPLL: A First-Order Davis Putnam Logeman Loveland Procedure. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 200–219. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  18. 18.
    Ganzinger, H., Korovin, K.: New directions in instantiation-based theorem proving. In: LICS 2003: Proceedings of the 18th Annual IEEE Symposium on Logic in Computer Science, p. 55 (2003)Google Scholar
  19. 19.
    Hooker, J., Rago, G., Chandru, V., Shrivastava, A.: Partial instantiation methods for inference in first order logic. Journal of Automated Reasoning 28(3), 371–396 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Baader, F., Horrocks, I., Sattler, U.: Description Logics. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation (2007)Google Scholar
  21. 21.
    Lutz, C., Sattler, U., Tobies, S.: A Suggestion for an n-ary Description Logic. In: Proceedings of the 1999 International Workshop on Description Logics, DL 1999 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Olivier Carloni
    • 1
  1. 1.MondecaParisFrance

Personalised recommendations