An Efficient Overload Control Strategy in Cloud

  • Xiling Sun
  • Jiajie Xu
  • Zhiming Ding
  • Xu Gao
  • Kuien Liu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7234)

Abstract

In cloud, service performances are expected to meet various QoS requirements stably, and a great challenge for achieving this comes from the great workload fluctuations in stateful systems. So far, few previous works have endeavored for handling overload caused by such fluctuations. In this paper, we propose an efficient overload control strategy to solve this problem. Crucial server status information is indexed by R-tree to provide global view for data movement. Based on index, a two-step filtering approach is introduced to eliminate irrational server candidates. A server selection algorithm considering workload patterns is presented afterwards to acquire load-balancing effects. Extensive experiments are conducted to evaluate the performance of our strategy.

Keywords

Cloud Computing Data Movement Server Selection Elasticity Provision Server Candidate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trushkowsky, B., Bodík, P., Fox, A., Franklin, M., Jordan, M., Patterson, D.: The SCADS director: scaling a distributed storage system under stringent performance requirements. In: FAST, pp. 163–176 (2011)Google Scholar
  2. 2.
    Bodík, P., Fox, A., Franklin, M., Jordan, M., Patterson, D.: Characterizing, modeling, and generating workload spikes for stateful services. In: SoCC, pp. 241–252 (2010)Google Scholar
  3. 3.
    Rolia, J., Zhu, X., Arlitt, M., Andrzejak, A.: Statistical service assurances for applications in utility grid environments. In: MASCOTS, pp. 247–256 (2002)Google Scholar
  4. 4.
    Copeland, G., Alexander, W., Boughter, E., Keller, T.: Data placement in bubba. In: SIGMOD, pp. 99–108 (1988)Google Scholar
  5. 5.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing. Communications of the ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  6. 6.
    Welsh, M., Culler, D.: Adaptive overload control for busy internet servers. In: Proceedings of the 4th Conference on USENIX Symposium on Internet Technologies and Systems, vol. 4, pp. 4–4 (2003)Google Scholar
  7. 7.
    Tatbul, N., Çetintemel, U., Zdonik, B., Cherniack, M., Stonebraker, M.: Load shedding in a data stream manager. In: VLDB, pp. 309–320 (2003)Google Scholar
  8. 8.
    Urgaonkar, B., Shenoy, P., Chandra, A., Goyal, P.: Dynamic provisioning of multi-tier internet applications. In: ICAC, pp. 217–228 (2005)Google Scholar
  9. 9.
    Romano, J., Wolf, M.: A more general central limit theorem for m-dependent random variables with unbounded m. Statistics and Probability Letters 47, 115–124 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Amur, H., Cipar, J., Gupta, V., Ganger, G., Kozuch, M., Schwan, K.: Robust and flexible power-proportional storage. In: SoCC, pp. 217–228 (2010)Google Scholar
  11. 11.
    Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree compared. In: Grid Computing Environments Workshop, pp. 1–10 (2008)Google Scholar
  12. 12.
    Chen, J., Soundararajan, G., Amza, C.: Autonomic provisioning of backend databases in dynamic content web servers. In: ICAC, pp. 231–242 (2006)Google Scholar
  13. 13.
    Lim, H., Babu, S., Chase, J.: Automated control for elastic storage. In: ICAC, pp. 1–10 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xiling Sun
    • 1
  • Jiajie Xu
    • 1
  • Zhiming Ding
    • 1
  • Xu Gao
    • 1
  • Kuien Liu
    • 1
  1. 1.NFS, Institute of SoftwareChinese Academy of SciencesBeijingChina

Personalised recommendations