Advertisement

Complex Magnetic Evolution and Magnetic Helicity in the Solar Atmosphere

  • Alexei A. Pevtsov
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 30)

Abstract

Solar atmosphere is a single system unified by the presence of large-scale magnetic fields. Topological changes in magnetic fields that occur in one place may have consequences for coronal heating and eruptions for other, even remote locations. Coronal magnetic fields also play role in transport of magnetic helicity from Sun’s subphotosphere/upper convection zone to the interplanetary space. We discuss observational evidence pertinent to some aspects of the solar corona being a global interconnected system, i.e., large-scale coronal heating due to new flux emergence, eruption of chromospheric filament resulting from changes in magnetic topology triggered by new flux emergence, sunspots rotation as manifestation of transport of helicity through the photosphere, and potential consequences of re-distribution of energy from solar luminosity to the dynamo for solar cycle variations of solar irradiance.

Keywords

Total Solar Irradiance Torsional Oscillation Magnetic Helicity Solar Dynamo Flux Emergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

National Solar Observatory (NSO) is operated by the Association of Universities for Research in Astronomy, AURA Inc. under cooperative agreement with the National Science Foundation.

References

  1. 1.
    Balasubramaniam, K. S., Pevtsov, A.: Ground-based synoptic instrumentation for solar observations. In: Solar Physics and Space Weather Instrumentation IV. Edited by Fineschi, Silvano; Fennelly, Judy. Proceedings of the SPIE, 8148, 814809-814818 (2011).Google Scholar
  2. 2.
    Balasubramaniam, K.S., Pevtsov, A.A., Cliver, E.W., Martin, S.F., and Panasenco, O.: The Disappearing Solar Filament of 2003 June 11: A Three Body Problem, The Astrophys. J. 743, 202–, (2011).Google Scholar
  3. 3.
    Brown, D. S., Nightingale, R. W., Alexander, D., Schrijver, C. J., Metcalf, T. R., Shine, R. A., Title, A. M., Wolfson, C. J.: Observations of Rotating Sunspots from TRACE. Solar Physics 216, 79–108 (2003).Google Scholar
  4. 4.
    Bruzek, A.: Über die Ursache der ”Plötzlichen” Filamentauflösungen. Mit 4 Textabbildungen. Zeitschrift fur Astrophysik 31, 99–110 (1952).Google Scholar
  5. 5.
    Chen, P. F., Shibata, K.: An Emerging Flux Trigger Mechanism for Coronal Mass Ejections. The Astrophys. J. 545, 524–531 (2000).Google Scholar
  6. 6.
    Druzhinin, S. A., Pevtsov, A. A., Levkovsky, V. L., Nikonova, M. V.: Line-of-sight velocity measurements using a dissector-tube. II. Time variations of the tangential velocity component in the Evershed effect. Astron. Astrophys. 277, 242–248 (1993).Google Scholar
  7. 7.
    Gnevysheva, R. S.: Helical Motions in Solar Photosphere Solnechnye Dann. Bull. 18, 26–30 (1941).Google Scholar
  8. 8.
    Gopasyuk, S. I.: Motions in sunspots like torsional oscillations, In: Sun and planetary system; Proceedings of the Sixth European Regional Meeting in Astronomy, Dubrovnik, Yugoslavia, October 19–23, 1981. (A82-47740 24-89) Dordrecht, D. Reidel Publishing Co., 125–126 (1982).Google Scholar
  9. 9.
    Feynman, J., Martin, S. F.: The initiation of coronal mass ejections by newly emerging magnetic flux. J. Geophys. Research 100, 3355–3367 (1995).Google Scholar
  10. 10.
    Galsgaard, K., Moreno-Insertis, F., Archontis, V., Hood, A.: A Three-dimensional Study of Reconnection, Current Sheets, and Jets Resulting from Magnetic Flux Emergence in the Sun. The Astrophys. J. 618, L153–L156 (2005).Google Scholar
  11. 11.
    Kempf, P.: Über drehende Bewegungen von Sonnenflecken. Astronomische Nachrichten 185, 197–208 (1910).Google Scholar
  12. 12.
    Khutsishvili, E., Kvernadze, T., Sikharulidze, M.: Rotation of Plasma in Sunspots. Solar Physics 178, 271–283 (1998).Google Scholar
  13. 13.
    Kucera, A.: Irregular rotation of the main sunspot in active region Hale 17 570 of 5–13 April 1981. Bulletin of the Astronomical Institutes of Czechoslovakia 33, 345–349 (1982).Google Scholar
  14. 14.
    Longcope, D.: Quantifying Magnetic Reconnection and the Heat it Generates. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) Proceedings of the SOHO 15 Workshop - Coronal Heating, ESA SP-575, pp. 198–209. European Space Agency, Paris (2004)Google Scholar
  15. 15.
    Longcope, D. W., Kankelborg, C. C.: Coronal Heating by Collision and Cancellation of Magnetic Elements.  The Astrophys. J. 524, 483–495 (1999)Google Scholar
  16. 16.
    Miller, R. A.: Unusual Rotation of a Sunspot 30 September to 8 October 1969. Solar Physics 16, 373–378 (1971).Google Scholar
  17. 17.
    Moreno-Insertis, F., Galsgaard, K., and Ugarte-Urra, I.: Jets in Coronal Holes: Hinode Observations and Three-dimensional Computer Modeling. The Astrophys. J. 673, L211–L214 (2008)Google Scholar
  18. 18.
    Moore R. L., Falconer D. A., and Sterling A. C.: Contagious Coronal Heating from Recurring Emergence of Magnetic Flux. In: Martens P. and Cauffman D. (eds.) Multi-Wavelength Observations of Coronal Structure and Dynamics, Vol.13 of COSPAR Colloquia Series, pp. 39–41. Pergamon, Dordrecht (2002).Google Scholar
  19. 19.
    Nagovitsyna, E. Y., Nagovitsyn, Y. A.: Some peculiarities of proper motions of sunspots.. Solnechnye Dann. Bull., 69–74 (1986).Google Scholar
  20. 20.
    Pevtsov, A. A., Canfield, R. C., Metcalf, T. R.: Latitudinal variation of helicity of photospheric magnetic fields. The Astrophysical J., 440, L109–L112 (1995).Google Scholar
  21. 21.
    Pevtsov A. A.: Transequatorial Loops in the Solar Corona, The Astrophys. J., 531, 553–560, (2000).Google Scholar
  22. 22.
    Pevtsov A. A. and Acton L. W.: Soft X-ray Luminosity and Photospheric Magnetic Field in Quiet Sun, The Astrophys. J., 554, 416–423. (2001).Google Scholar
  23. 23.
    Pevtsov, A.A., Kazachenko, M.: On the Role of the Large-Scale Magnetic Reconnection in the Coronal Heating. In: Walsh, R.W., Ireland, J., Danesy, D., Fleck, B. (eds.) Proceedings of the SOHO 15 Workshop - Coronal Heating, ESA SP-575, pp. 241–246. European Space Agency, Paris (2004)Google Scholar
  24. 24.
    Pevtsov, A. A., Maleev, V. M., Longcope, D. W.: Helicity Evolution in Emerging Active Regions. The Astrophys. J. 593, 1217–1225 (2003).Google Scholar
  25. 25.
    Pevtsov, A. A., Sattarov, I. S.: A Study of Helical Oscillations in Sunspots. Solnechnye Dann. Bull. 3, 65–71 (1985).Google Scholar
  26. 26.
    Reinard, A. A., Henthorn, J., Komm, R., Hill, F.: Evidence That Temporal Changes in Solar Subsurface Helicity Precede Active Region Flaring. The Astrophysical J., 710, L121-L125 (2010).Google Scholar
  27. 27.
    Rempel, M.: Solar and stellar activity cycles. Journal of Physics Conference Series 118, 012032 (2008).Google Scholar
  28. 28.
    Shibata, K., Nozawa, S.; Matsumoto, R.; Tajima, T.; Sterling, A. C.: Atmospheric Heating in Emerging Flux Regions. In: Ulmschneider, P., Priest, E., and Rosner, R. (eds.) Mechanisms of Chromospheric and Coronal Heating, pages 609–614, Springer-Verlag, Berlin (1991).Google Scholar
  29. 29.
    Solov’ev, A. A.: Torsional oscillations of sunspots. Solnechnye Dann. Bull. 1, 73–78 (1984).Google Scholar
  30. 30.
    Tadesse, T., Wiegelmann, T., Inhester, B., Pevtsov, A.: Magnetic Connectivity Between Active Regions 10987, 10988, and 10989 by Means of Nonlinear Force-Free Field Extrapolation. Solar Physics (2011) doi: 10.1007/s11207-011-9764-zGoogle Scholar
  31. 31.
    Tian, L., Alexander, D.: Role of Sunspot and Sunspot-Group Rotation in Driving Sigmoidal Active Region Eruptions. Solar Physics 233, 29–43 (2006).Google Scholar
  32. 32.
    Wang, Y.-M., Sheeley, N. R., Jr.: Filament Eruptions near Emerging Bipoles. The Astrophys. J. 510, L157–L160 (1999).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.National Solar ObservatorySunspotUSA

Personalised recommendations