On the Interaction of Solar Rotational Discontinuities with a Contact Discontinuity Inside the Solar Transition Region as a Source of Plasma Heating in the Solar Corona

  • S. A. Grib
  • E. A. Pushkar
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 30)


We consider the self-similar MHD problem of the oblique interference of a solar rotational (Alfven) discontinuity A and a stationary contact discontinuity C. The interaction between A and C is studied for typical conditions in the solar corona. Since solar Alfven waves observed in the solar plasma are numerous, prerequisites exist for the formation of a solar rotational discontinuity that propagates from the chromosphere through the transition region to the corona. Dissipative slow MHD shock waves with insignificant variation of the magnetic field also appear due to the refraction of the solar non-dissipative rotational discontinuities against a contact discontinuity inside the transition region. It is supposed that a real source of plasma heating may exist in the high solar corona due to the well-known mechanism of Landau damping of the dissipative slow MHD shock waves. Frequently observed explosive events may also be triggered in the solar chromospheric plasma. Thereby, we suggest a new model of the coronal plasma heating.


Shock Wave Solar Wind Magnetic Field Strength Solar Corona Rarefaction Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is carried out in the frame of the Program 15 of the OFN of the Russian Academy of Sciences and with a partial support of the RFFI project No. 11-01-00235.


  1. 1.
    Barmin, A.A. and Pushkar, E.A.: An oblique interaction of the Alfven discontinuity with a contact one in magnetohydrodynamics. Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 131–142 (1990).Google Scholar
  2. 2.
    Barnes A.: Collisionless damping of hydromagnrtic waves. Phys.Fluids,9,1483–1495.(1966).Google Scholar
  3. 3.
    Boynton G.C. and Torkelsson U.: Coronal hole heating via nonlinear mode conversion and dissipation of transverse mode magnetohydrodynamic waves. Proc.of the Third SOHO Workshop – Solar Dynamic Phenomena and Solar Wind Consequences. 51–55. (1994).Google Scholar
  4. 4.
    Burlaga, L. F. (1995) Interplanetary Magnetohydrodynamics. Oxford University Press, Oxford.Google Scholar
  5. 5.
    De Pontieu B., Mc Intosh S.W., Carlson M., Hansteen V.H., Tarbell T.D., Boerner P., Martinez-Sykora J., Schrijver C.J., Title A.M.: The origin of hot plasma in the solar atmosphere. Science.331.55–58. (2011).Google Scholar
  6. 6.
    Gabriel, A.H.: Solar coronal structures. Proc. of the 144 Coll. of the IAU. In: Rusin, V., Heinzel, P. and Vial, J.-C. (Eds.), IAU Symposium, 144. VEDA, Bratislava, 1–9.(1994).Google Scholar
  7. 7.
    Grib S.A.: The Sun as the source of nonlinear perturbations of the solar corona and the heliosphere.In: Stepanov A.V., Benevolenskaya.E. and Kosovichev A.G.(Eds.). Multi-Wavelength Investigations of Solar Activity.Proc. IAU Sympos. 223.547–548. St-Petersburg. Pulkovo. (2004).Google Scholar
  8. 8.
    Grib, S.A., Koutchmy S. and Sazonova V.: MHD shock interactions in coronal structures. Solar Physics, 169, 151–166. (1996).Google Scholar
  9. 9.
    Grib, S.A. and Pushkar, E.A.: Pecularities of the MHD discontinuities interactions in the solar wind. In: Marsh, E. and Schwenn, R. (Eds.), Solar Wind Seven, COSPAR Colloquium Series, Vol. 3. Pergamon, Oxford, 457–460 (1992).Google Scholar
  10. 10.
    Gurzadian, G. A. Astrophysics, Nauka, Moscow, 90 (1984).Google Scholar
  11. 11.
    Kumar S., Sharma R.P., Singh H.D.: Cavitation by nonlinear interaction between inertial Alfven waves and magnetosonic waves in low beta plasma. Solar Phys., 270, 529–535 (2011).Google Scholar
  12. 12.
    Landau, L.D. and Lifshitz, L.E.: Electrodynamics of the Continuous Medium, Gosudastvennue Izdatel’stvo Fiz.-Mat Literatury, Moscow, 283–289 (1959).Google Scholar
  13. 13.
    Liu C.C., Tsai C.L., Cha H.J., Weng S.J., Chao J.K., Lee L.C.: A possible generation mechanism of interplanetary rotational discontinuities. Journ.geophys, Res., 114, A08102/1-A08102//9 (2009).Google Scholar
  14. 14.
    Mariska, J.T.: The Solar Transition Region. Cambridge University Press, Cambridge (1992).Google Scholar
  15. 15.
    Orta J.A., Huerta M.A., Boynton G.C.: MHD shock heating of the solar corona. Astroph.J.596, 648–655 (2003).Google Scholar
  16. 16.
    Richter A.K., Rosenbauer H., Neubauer F.M., Ptitsyna N.G.: Solar wind observations associated with a slow forward shock wave at 0.31 A.u. Journ.Geophys.Res., 90, 7581–7586 (1985).Google Scholar
  17. 17.
    Ryutova M., Tarbell Th.: MHD shocks and the origin of the transition region.Phys.Rev.Letters.90 (2003). Doi: 10.1103/Phys.Rev.Lett. 90.191101.Google Scholar
  18. 18.
    Shibata, K. In: Tsiganos, K.C. (Ed.), Solar and Astrophysical Magnetohydrodynamic Flows. Kluwer, Dordrecht, 217–247 (1996).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Central Astronomical Observatory at Pulkovo of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Moscow State Industrial UniversityMoscowRussia

Personalised recommendations