Advertisement

Observations of Solar Flares from GHz to THz Frequencies

  • Pierre Kaufmann
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 30)

Abstract

The discovery of a new solar burst spectral component with sub-THz fluxes increasing with frequency, simultaneous but separated from the well known microwave component, brings serious constraints for interpretation. Suggested explanations are briefly reviewed. They are inconclusive indicating that further progresses on the understanding of nature of the emission mechanisms involved require the knowledge of GHz to THz continuum burst spectral shapes. New 45 and 90 GHz high sensitivity solar polarimeters are being installed at El Leoncito high altitude observatory, where sub-THz (0.2 and 0.4 THz) solar flare flux data are being obtained regularly since several years. Solar flare THz photometry in the continuum should be carried in space or at few selected frequency windows at exceptional ground-based sites. A dual photometer system, operating at 3 and 7 THz, is being constructed to be flown in a long duration stratospheric balloon flight in Antarctica (summer 2013–2014) in cooperation with University of California, Berkeley, together with GRIPS experiment. One test flight is planned for the fall 2012 in USA. Another long duration balloon flight over Russia is considered (2015–2016), in a cooperation with Moscow Lebedev Physics Institute.

Keywords

Solar Flare Langmuir Wave Solar Burst Golay Cell Solar Active Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

These researches receive partial support from Brazilian agencies FAPESP, CNPq, INCT–NAMITEC–CNPq, Mackpesquisa, Argentina agency CONICET and US agency AFOSR.

References

  1. 1.
    Akabane, K. et al.: Solar Phys. 33, 431 (1973).Google Scholar
  2. 2.
    Bastian, T.S., Benz, A.O., and Gary, D.E.: Ann. Rev. Astron. Astrophys. 36, 131 (1998).Google Scholar
  3. 3.
    Beckman, J.E.: Nature 220, 52 (1968).Google Scholar
  4. 4.
    Boischot, A., Denisse, J.F.: Comptes Rendus 245, 194 (1957).Google Scholar
  5. 5.
    Bingham, G.E. et al.: Proc. SPIE 5157, 143 (2003).Google Scholar
  6. 6.
    Chamberlin, W.M., Lane, A.P. Stark, A.A.: Astrophys. J. 476 (1997).Google Scholar
  7. 7.
    Clark, C.D., Park, W.M.: Nature 219, 922 (1968).Google Scholar
  8. 8.
    Croom, D.L.: Nature 221, 945 (1969).Google Scholar
  9. 9.
    Croom, D.L.: in High energy phenomena in the Sun (ed. by R. Ramaty and R.G. Stone), NASA Publ. SP 342, 114 (1973).Google Scholar
  10. 10.
    Degiacomi, C.G., Kneubuhl, F.K, Huguenin, D.: Astrophys. J. 298 (1985).Google Scholar
  11. 11.
    Dulk, G.A.: Ann. Rev. Astron. Astrophys. 36, 131 (1998).Google Scholar
  12. 12.
    Erickson, E.F.: Space Sci. Rev. 84, 91 (1985).Google Scholar
  13. 13.
    Fleishman, G.F., Kontar, E.: Astrophys. J. 709, L127 (2010).Google Scholar
  14. 14.
    Fernandes, L.O.T. et al.: XXX URSI General Assembly. Istanbul, Turkey, 14–20 August (2011) paper JP2.10.Google Scholar
  15. 15.
    Grossman, E.: AT-Atmospheric Transmission Software User’s Manual, version 1.5, Airhead Software Co., Boulder, CO (1989).Google Scholar
  16. 16.
    Guidice, D.L.: BAAS 11, 311 (1979).Google Scholar
  17. 17.
    Georges, C.B. et al.: Proc. 2nd SBMO–International Microwave Symposium, Rio de Janeiro, Brazil, IMOC/IEEE–MTT Cat. N89th0260-0, 447 (1989).Google Scholar
  18. 18.
    Gimenez de Castro, C.G. et al.: Astron. Astrophys. 140, 343 (1999).Google Scholar
  19. 19.
    Hachenberg, O., Wallis, G.: Z. Astrophys. 52, 42 (1961).Google Scholar
  20. 20.
    Harris, D.C.: Materials for infrared windows and domes, SPIE Optical EngineeringGoogle Scholar
  21. 21.
    Hudson, H.S.: Solar Phys. 45, 69 (1975).Google Scholar
  22. 22.
    Hurford, G.J., Read, R.B., Zirin., H.: Sol. Phys. 94, 413 (1984). Press, Washington, DC (1999)12.Google Scholar
  23. 23.
    Kaufmann, P. et al.: Nature 313, 380 (1985).Google Scholar
  24. 24.
    Kaufmann, P. et al.: Astron. Astrophys. 157, 11 (1986).Google Scholar
  25. 25.
    Kaufmann, P.: in Energy Conversion and Particle Acceleration in the Solar Corona(ed. by K.–L. Klein), Lectures Notes in Physics 612 (2003), Springer-Verlag, Berlin, Germany, 294.Google Scholar
  26. 26.
    Kaufmann, P. et al.: J.Geophys.Res. 108, SSH-5-1 (2003).Google Scholar
  27. 27.
    Kaufmann, P. et al.: Astrophys. J. 603, L121 (2004).Google Scholar
  28. 28.
    Kaufmann, P., Raulin, J.-P.: Phys. Plasmas 13, 070701 (2006).Google Scholar
  29. 29.
    Kaufmann, P. et al.: Proc. of SPIE 7012, 70120L 1–8, (2008).Google Scholar
  30. 30.
    Kaufmann, P. et al.: Solar Phys. 255, 131 (2009).Google Scholar
  31. 31.
    Kaufmann, P. et al.: Astrophys J. 697, 420 (2009).Google Scholar
  32. 32.
    Kaufmann, P. et al.: in IRMMW–THz International Society of Infrared, Millimeter and Terahertz Waves Conference, Rome, Italy. (2010), September 2–10, paper Mo-F3.1.Google Scholar
  33. 33.
    Kaufmann, P. et al.: J. Microwaves, Optoelectronics and Electromagnetic Applications 10, 288 (2011).Google Scholar
  34. 34.
    Kaufmann, P. et al.: Astrophys. J. (2011) in press.Google Scholar
  35. 35.
    Klein, K.-L.: Astron. Astrophys. 183, 341 (1987).Google Scholar
  36. 36.
    Klopf, J.M.: Proc. 1st. SMESE Workshop, Paris (2008) 10–12 March.Google Scholar
  37. 37.
    Klopf, J.M., Kaufmann, P., Raulin, J.-P.: BAAS 42, 905 (2010).Google Scholar
  38. 38.
    Kornberg, M. et al.: Proc. MOMAG 2008 - 13th SBMO and 8th CBMAG, Florian?polis, SC, Brazil, 7–10 September, 365 (2008).Google Scholar
  39. 39.
    Kundu, M.R., Shevgaonkar, R.K: Astrophys. J. 291, 860 (1985).Google Scholar
  40. 40.
    Kurt, V.G. et al.: Cosmic Res. 48, 70 (2010).Google Scholar
  41. 41.
    Lawrence, S.: Infrared and submillimeter atmospheric characteristics of high Antarctic plateau sites. Publ. Astron Soc. Pacific 116, 482–492 (2004).Google Scholar
  42. 42.
    Marcon, R. et. al.: J. Infrared, Miloimeter, Terahertz Waves 33, 192 (2012).Google Scholar
  43. 43.
    McClements, G., Brown, J.C.: Astron. Astrophys. 165, 235 (1986).Google Scholar
  44. 44.
    Nakajima, H. et al.: Publ. Astron. Soc. Japan 37, 163 (1985).Google Scholar
  45. 45.
    Poglitsch, A.: Astron. Astrophys. 518, L2, 1–12 (2010).Google Scholar
  46. 46.
    Ramaty, R., Petrosian, V.: Astrophys. J. 178, 241 (1972).Google Scholar
  47. 47.
    Ramaty, R. et al.: Astrophys. J. 436, 941 (1994).Google Scholar
  48. 48.
    Ramaty, R. et al.: Astrophys. J. 455, L193 (1995).Google Scholar
  49. 49.
    Sakai, J.I. et al.: Astron. Astrophys. 457, 313 (2006).Google Scholar
  50. 50.
    Sakai, J.I., Nagasugi, Y.: Astron. Astrophys. 474, L33 (2007).Google Scholar
  51. 51.
    Shih, A.Y.: American Geophysical Union, Fall Meeting (2008) abstract SM11B-1602.Google Scholar
  52. 52.
    Shimabukuro, F.I.: Solar Phys. 15, 424 (1970).Google Scholar
  53. 53.
    Shklovsky, J.: Nature 202, 275 (1964).Google Scholar
  54. 54.
    Siegel, P.H.: International J. of High Speed Electronics and Systems 13, 1 (2003).Google Scholar
  55. 55.
    Silva, A.V.R. et al.: Solar Phys. 245, 311 (2007).Google Scholar
  56. 56.
    Stein, W.A., Ney, E.P.: J. Geophys. Res. 68, 65 (1963).Google Scholar
  57. 57.
    Sturrock, P.A.: in Rapid Fluctuations in Solar Flares (ed. by B.R. Dennis, L.E. Orwig, A.L. Kiplinger) NASA Conf. Publ. 2449 (1983) 1.Google Scholar
  58. 58.
    Trottet, G. et al.: Astrophys. J. 577, 509 (2008).Google Scholar
  59. 59.
    Vlahos, L. et al.: in Energetic phenomena on the Sun (ed. by M.R. Kundu and B. Woodgate). NASA Conf. Publ. 2439 (1986) 2.1.Google Scholar
  60. 60.
    White et al.: Astrophys. J. 384, 656 (1992).Google Scholar
  61. 61.
    Wild, J.P., Smerd, S.F., Weiss, A.A.: Ann. Rev. Astron. Astrophys. 1, 291 (1963).Google Scholar
  62. 62.
    Williams, G.P.: Rev. Sci. Instrum. 73 (2002).Google Scholar
  63. 63.
    Zirin, H., Tanaka, K.: Solar Phys. 32, 173 (1973).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Center for Radio Astronomy and Astrophysics, Escola de EngenhariaUniversidade Presbiteriana MackenzieSão PauloBrazil
  2. 2.Center for Semiconductor ComponentsUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations