Coronal Mass Ejections on the Sun and Their Relationship with Flares and Magnetic Helicity

  • G. A. Porfir’eva
  • G. V. Yakunina
  • V. N. Borovik
  • I. Y. Grigoryeva
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 30)


A brief review of results of observations of coronal mass ejections (CMEs), obtained aboard SOHO and STEREO during last decades, is presented. CMEs velocity, acceleration, mass and angular width are considered in connection with the flares arising simultaneously with the CMEs from common solar regions. Statistically properties of associated CMEs-flares are related. So, higher the flux of the associated flare is, higher the CME mass, angular width and velocity are. The magnetic helicity of an active region (AR) seems to play an important role whether a confined or a CME-associated flare will be produced. The dynamical evolution of CMEs shows that the total energy is kept relatively constant and the energy released in radio and other forms of radiations is not significant. Slow CMEs could propagate through heliosphere with a deflection of \(2 - 3{0}^{\circ }\) both in latitudinal and azimuthal direction obeying an interaction with the surrounding magnetic field. Faster CMEs tend to propagate radially. Data from published scientific papers and Internet have been used.


Coronal Mass Ejection Ecliptic Plane Magnetic Helicity Geostationary Operational Environmental Satellite Eruptive Filament 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work was supported by the Russian Foundation for Basic Research grant No 11–02–00843 and by grants OFN-15 and NSH-3645.2010.2.


  1. 1.
    Gosling, J. T., Hildner, E., MacQween, R. M., Munro, R. H., Poland, A. I. and Ross, C. L. (1976) The speeds of coronal mass ejection events. Solar Phys., 48, 389–397.Google Scholar
  2. 2.
    Cyr, O. C. St. and Webb, D.F. (1991) Activity associated with coronal mass ejections at solar minimum: SMM observations from 1984–1986. Solar Phys., 136, 379–394.Google Scholar
  3. 3.
    Dryer, M. (1996) Comments on the origins of coronal mass ejections. Solar Phys., 169, 421–429.Google Scholar
  4. 4.
    Vourlidas, A., Subramanian, P., Dere, K. P. and Howard, R. A. (2000) Large-angle spectrometric measurements of the energetics of coronal mass ejections. Ap. J., 534, 456–467.Google Scholar
  5. 5.
    Akmal, A., Raymond, J. C. (2001) SOHO observations of coronal mass ejection. Ap. J., 553, 922–934.Google Scholar
  6. 6.
    Zhang, J., Dere, K. P., Howard, R. A., Kundu, M. R. and White, S. M. (2001) On the temporal relationship between coronal mass ejections and flares. Ap. J., 559, 452–462.Google Scholar
  7. 7.
    Andrews, M. D. (2003) A search for CMEs associated with big flares. Solar Phys., 218, 261–279.Google Scholar
  8. 8.
    Kuznetsov, V. D. (1994) Model ideas on the origin of coronal transients. In: Results of science and technology, Astronomy, 45, (Russian).Google Scholar
  9. 9.
    Kuznetsov V. D. (2008) Coronal mass ejections. Plasma heliophysics, IKI RAN, Moscow, 1, 82–98, (Russian).Google Scholar
  10. 10.
    Yashiro, S., Michalek, G., Akiyama, S., Gopalswamy, N. and Howard, R. A. (2008) Spatial relationship between solar flares and coronal mass ejections. Ap. J. 673, 1174–1180.Google Scholar
  11. 11.
    Moon, Y.-J., Choe, G. S., Wang, H., Pak, Y. D. and Cheng C. Z. (2003) Relationship between CME kinematics and flare strength. J. Korean Astron. Soc., 36, 61–65.Google Scholar
  12. 12.
    Zhang, J., Dere, K. P., Howard, R. A. and Vourlidas, A. (2004) A study of the kinematic evolution of coronal mass ejections. Ap. J., 604, 420–432.Google Scholar
  13. 13.
    Gopalswamy, N., Akiyama, S., Yashiro, S. and Makela, P. (2010) Coronal mass ejections from sunspots and non-sunspot regions. Magnetic Coupling between the Interior and the Atmosphere of the Sun, eds. S. S. Hasan and R. J. Rutten, Astrophys. and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 289–307.Google Scholar
  14. 14.
    Aarnio, A. N., Stassun, K. G., Hughes, W. J. and McGregor, S. L. (2011) Solar flares and coronal mass ejections: a statistically determined flare-flux-CME mass correlation. Solar Phys., 268, 195–212.Google Scholar
  15. 15.
    Kumar, P., Manoharan, P. K. and Uddin, W. (2010) Evolution of solar magnetic field and associated multiwavelength phenomena: flare events on 2003 November 20. Ap. J., 710, 1195–1204.Google Scholar
  16. 16.
    Porfir’eva, G. A., Yakunina, G. V. and Oreshina A. V. (2010) Interacting filaments on the Sun. Proceedings Confference Solar and solar-earth physics – 2010, St-Petersburg, 331–334.Google Scholar
  17. 17.
    Wang, Y., Zhang, J. and Shen, Ch. (2009) An analytical model probing the internal state of coronal mass ejections based on observations of their expansions and propagations. J.Geophys. Res., 114 (A13), 10104–10129.Google Scholar
  18. 18.
    Shen, C., Wang, Y., Gui, B., Ye, P. and Wang, S. (2011) Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Solar Phys. 269, 389–400.Google Scholar
  19. 19.
    Nindos, A. and Andrews, M.D. (2004) The association of big flares and coronal mass ejection: what is the role of magnetic helicity? Ap. J., 616, L175-L178.Google Scholar
  20. 20.
    Kilpua, E. K. J., Pomoell, J., Vourlidas, A., Vainio, R., Luhmann, J., Li, Y., Schroeder, P., Galvin, A. B. and Simunae, K. (2009) STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann. Geophys., 27, 4491–4503.Google Scholar
  21. 21.
    MacQueen, R. M., Hundhausen, A. J. and Conover, C. W. (1986) The propagation of coronal mass ejection transients. Journal of Geophysical Research, 91, 31–38.Google Scholar
  22. 22.
    Cremades, H. and Bothmer, V. (2004) On the three-dimensional configuration of coronal mass ejections. A&A, 422, 307–322.Google Scholar
  23. 23.
    Cremades, H., Bothmer, V. and Tripathi D. (2006) Properties of structured coronal mass ejections in solar cycle 23. Adv. Space Res., 38, 461–465.Google Scholar
  24. 24.
    Colanino, R. C. and Vourlidas, A. (2009) First determination of the true mass ejections: a novel approach to using the two STEREO viewpoints. Ap. J., 698, 852–858.Google Scholar
  25. 25.
    Liu, Y., Davis J. A., Luhmann, J. G., Vourlidas, A., Bale, S. D. and Lin, R. P. (2010) Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 au. Ap. J., 710, L82-L87.Google Scholar
  26. 26.
    Lugaz, N., Hernandas-Charpak, J. N., Roussev, I. I., Davis, C. J., Vourlidas, A. and Davies J. A. (2010) Determining the azimuthal properties of coronal mass ejections from multi-spacecraft remote-sensing observations with STEREO SECCHI. Ap. J., 715, 493–499.Google Scholar
  27. 27.
    Ternisien, A., Vourlidas, A. and Howard, R. A. (2009) Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys., 256, 111–130.Google Scholar
  28. 28.
    Wagner W. J., Hildner E., House L. L., Sawyer, C., Sheridan, K. V. and Dulk, G. A. (1981) Radio and visible light observations on matter ejected from the Sun. Ap. J., 244, L123-L126.Google Scholar
  29. 29.
    Gopalswamy N. and Kundu M. R. (1993) Thermal and nonthermal emissions during a coronal mass ejections. Solar Phys., 143, 327.Google Scholar
  30. 30.
    Grechnev, V. V., Zandanov, V. G., Uralov A. M., Maksimov, V. P., Rudenko, V. G., Borovic, V. N., Gelfreich, G. B., Grigorieva, I.Y., Medar, V. G. and Korzhavin, A. V. (2004) Observations of CME-related phenomena in a wide spectral range. Solar Phys., 225, 379–401.Google Scholar
  31. 31.
    Uralov, A. M. and Grechnev, V. V. (2004) Initial localization and kinematic characteristics of structure components of a CME. Proceedings IAU Symposium No 223, 303–304, A. V. Stepanov, E. E. Benevolenskaya and A. G. Kosovichev eds.Google Scholar
  32. 32.
    Borovik, V. N., Grechnev, V. V., Bugaenko, O. I., Bogachev, S. A., Grigoryeva, I. Y., Kuzin, S. V., Lesovoi, S. V., Livshits, M. A., Pertsov, A. A., Rudenko, G. V., Slemzin, V. A., Stepanov, A. I., Shibasaki, K., Uralov, A. M., Zandonov, V. G. and Zhitnik I. A. (2005) Observations of a post-eruptive arcade on October 22, 2001 with CORONAS-F, other spaceborne telescopes, and in microwaves. Proceedings IAU No 226, 2005, 108–109, K.P. Dere, J. Wang and Y. Yan eds.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • G. A. Porfir’eva
    • 1
  • G. V. Yakunina
    • 1
  • V. N. Borovik
    • 2
  • I. Y. Grigoryeva
    • 2
  1. 1.Sternberg Astronomical InstituteMoscow State UniversityMoscowRussia
  2. 2.Central Astronomical Observatory of RAS at PulkovoSt. PetersburgRussia

Personalised recommendations