The Unusual Sunspot Minimum: Challenge to the Solar Dynamo Theory

  • V. N. Obridko
  • Yu. A. Nagovitsyn
  • Katya Georgieva
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 30)


The last cycle 23 was low, long, complex, and very unusual. The “peculiarity” of the minimum was that the field was weak, but also that the morphology of the heliosphere was very complex. A large number of features of intermediate scale—neither global nor local—were observed. There are reasons to believe that the amplitude and the period of a cycle are determined by the large-scale meridional circulation which, in turn, may be modulated by planetary tidal forces. There are evidences that at present the deep meridional circulation is very slow, from which a low and late maximum of cycle 24 can be predicted. Calculations of the planetary tidal forces indicate that cycle 25 will be still lower, and therefore cycle 24 is the beginning of a secular solar activity minimum. Various prediction methods are summarized, all indicating that we are entering a period of moderately low activity, and the possibility of a Maunder-type minimum is very small. Arguments are also presented in favor of a near-surface dynamo.


Solar Activity Solar Cycle Current Sheet Coronal Hole Meridional Circulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nagovitsyn, Yu. A., Nagovitsyna, E. Yu., Makarova, V. V.: Date of minimum of the “protracted” solar cycle 23. Astron. Lett. 36, 605–608 (2010)Google Scholar
  2. 2.
    Ivanov E.V., Obridko V.N., Nepomnyashchaya E.V., Kutilina N.V.: Relevance Ofcme to the Structure of Large-Scale Solar Magnetic Fields. Solar Phys. 184, 369–384 (1999)Google Scholar
  3. 3.
    Tokumaru, M., Kojima, M., Fujiki, K.: Solar cycle evolution of the solar wind speed distribution from 1985 to 2008, J. Geophys. Res. 115 (A4), CiteID A04102 (2010)Google Scholar
  4. 4.
    Babcock, H.W.: The topology of the sun’s magnetic field and the 22-year cycle, Astrophys. J. 133, 572–587 (1961)Google Scholar
  5. 5.
    Leighton, R.: A Magneto-Kinematic Model of the Solar Cycle. Astrophys. J. 156, 1–26 (1969)Google Scholar
  6. 6.
    Wang, Y.-M., Sheeley, N. R. Jr., Lean, J.: Meridional Flow and the Solar Cycle Variation of the Sun’s Open Magnetic Flux, Astrophys. J. 580, 1188–1196 (2002)Google Scholar
  7. 7.
    Hathaway, D., Nandy, D., Wilson R., Reichmann, E.: Evidence That a Deep Meridional Flow Sets the Sunspot Cycle Period, Astrophys. J. 589, 665–670 (2003)Google Scholar
  8. 8.
    Passos, D., Lopes, I.: Grand minima under the light of a low order dynamo model, 2009arXiv0908.0496P (2009)Google Scholar
  9. 9.
    Passos, D., Lopes, I.: Grand minima under the light of a low order dynamo model, J. Atm. Solar-Terr. Phys. 73 (2-3), 191–197 (2011)Google Scholar
  10. 10.
    Karak, B. B.: Importance of Meridional Circulation in Flux Transport Dynamo: The Possibility of a Maunder-like Grand Minimum, Astrophys. J. 724, 1021–1029 (2010)Google Scholar
  11. 11.
    Karak, B. B., Choudhuri, A. R.: The Waldmeier effect and the flux transport solar dynamo, Mon. Notic. Roy. Astron. Soc. 410, 1503 -1512 (2011)Google Scholar
  12. 12.
    Yeates, A.R., Nandy, D., Mackay, D.H.: Exploring the Physical Basis of Solar Cycle Predictions: Flux Transport Dynamics and Persistence of Memory in Advection- versus Diffusion-dominated Solar Convection Zones. Astrophys. J., 673 (1), 544–556 (2008)Google Scholar
  13. 13.
    Hotta, H., Yokoyama, T.: Importance of Surface Turbulent Diffusivity in the Solar Flux-Transport Dynamo. Astrophys. J.709 (2), 1009–1017 (2010)Google Scholar
  14. 14.
    Choudhuri, A. R.: Astrophysics for Physicists, Cambridge University Press, 2010Google Scholar
  15. 15.
    Georgieva, Kirov, B.: Solar dynamo and geomagnetic activity. J. Atm. and Solar-Terr. Phys., 73 (2-3), 207–222 (2009)Google Scholar
  16. 16.
    Georgieva, K.: Why the Sunspot Cycle Is Double Peaked. ISRN Astronomy and Astrophysics (2011) id.#437838Google Scholar
  17. 17.
    Ruediger, G., Brandenburg, A.:A solar dynamo in the overshoot layer: cycle period and butterfly diagram. Astron. Astrophys. 296, 557–556 (1995)Google Scholar
  18. 18.
    Choudhuri, A.R., Schussler, M., Dikpati, M.: The solar dynamo with meridional circulation. Astronomy and Astrophysics, 303, L29-L32 (1995)Google Scholar
  19. 19.
    Tobias, S., Weiss, N.: The Solar Tachocline, Hughes D.W., Rosner R., Weiss N.O. (Eds.). Cambridge University Press, Cambridge, UK (2007)Google Scholar
  20. 20.
    Parker, E.N.: A solar dynamo surface wave at the interface between convection and nonuniform rotation. Astrophys. J., Part 1 408 (2), 707–719 (1993)Google Scholar
  21. 21.
    Benevolenskaya, E.E., Hoeksema, J.T., Kosovichev, A.G., Scherrer, P.H.: The Interaction of New and Old Magnetic Fluxes at the Beginning of Solar Cycle 23. Astrophys. J. 517 (2), L163-L166 (1999)Google Scholar
  22. 22.
    Birch, A.C.: Progress in sunspot helioseismology. J. Physics: Conference Series, 271 (1), 012001 (2011)Google Scholar
  23. 23.
    Obridko, V.N.: Solar and Stellar Variability: Impact on Earth and Planets, Proceedings of the International Astronomical Union, IAU Symposium 264, 241–250 (2010)Google Scholar
  24. 24.
    Lefebvre, S., Kosovichev, A.G., Nghiem, P., Turck-Chièze, S., Rozelot, J. P.: Cyclic variability of the seismic solar radius from SOHO/MDI and related physics. Proceedings of SOHO 18/GONG 2006/HELAS I, 7–11 August 2006, Sheffield, UK., Fletcher K. (Ed.). Thompson M. (Sci.Ed.), Published on CDROM, p.9.1 (2006)Google Scholar
  25. 25.
    Brandenburg ,A.: The Case for a Distributed Solar Dynamo Shaped by Near-Surface Shear. Astrophys. J., 625 (1), 539–547 (2005)Google Scholar
  26. 26.
    Pipin, V.V., Kosovichev, A.G.: The Asymmetry of Sunspot Cycles and Waldmeier Relations as a Result of Nonlinear Surface-shear Shaped Dynamo. Astrophys. J., 741 (1), article id. 1 (2011)Google Scholar
  27. 27.
    Hathaway, D. H.: The Solar Cycle, Living Rev. Solar Phys. 7 No 1, (2010)Google Scholar
  28. 28.
    Petrovay, K., Solar Cycle Prediction. Living Rev. Solar Phys. 7 No 6 (2010)Google Scholar
  29. 29.
    Nagovitsyn Yu.A. Scenario of Variations of Solar Activity Level in the Next Few Decades: Low Cycles? Cycles of Activity on the Sun and Stars, Obridko, V.N., Nagovitsyn, Yu.A. (eds), Euroasian Astronomical Society, St. Petersburg, 99–106 (2009)Google Scholar
  30. 30.
    Penn, M., Livingston, W.: Long-term Evolution of Sunspot Magnetic Fields. arXiv:1009.0784v1 To appear in IAU Symposium No. 273 (2011)Google Scholar
  31. 31.
    Pevtsov, A.A., Nagovitsyn, Yu.A., Tlatov, A.G., Rybak, A.L.: Long-term Trends in Sunspot Magnetic Fields. Astrophys. J. Lett. 742 (2), article id. L36 (2011)Google Scholar
  32. 32.
    Altrock, R. C.: The Progress of Solar Cycle 24 at High Latitudes. SOHO-23: p.147, in ASP Conf. Series Vol. 428, Cranmer S.R., Hoeksema T., John L. Kohl J.L. (Eds.). San Francisco: Astronomical Society of the Pacific (2010)Google Scholar
  33. 33.
  34. 34.
    McComas, D.J.; Ebert, R.W.; Elliott, H.A.; Goldstein, B.E.; Gosling, J.T.; Schwadron, N.A.; Skoug, R.M. Weaker solar wind from the polar coronal holes and the whole Sun Geophysical Research Letters, Volume 35, Issue 18, CiteID L18103 (2008)Google Scholar
  35. 35.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • V. N. Obridko
    • 1
  • Yu. A. Nagovitsyn
    • 2
  • Katya Georgieva
    • 3
  1. 1.The Pushkov institute of terrestrial magnetism, ionosphere and radiowave propagationRussian Academy of ScienceTroitskRussia
  2. 2.Central Astronomical Observatory at PulkovoRussian Academy of ScienceSt.-PetersburgRussia
  3. 3.Space and Solar-Terrestrial Research InstituteBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations