Argumentation and the Event Calculus

  • Evgenios Hadjisoteriou
  • Antonis Kakas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7360)


We study how the problem of temporal projection can be formalized in terms of argumentation. In particular, we extend earlier work of translating the language \(\mathcal{E}\) for Reasoning about Actions and Change into a Logic Programming argumentation framework, by introducing new types of arguments for (i) backward persistence and (ii) persistence from observations. The paper discusses how this extended argumentation formulation is close to the original Event Calculus proposed by Kowalski and Sergot in 1986.


Argumentation Event Calculus Reasoning about Actions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Hadjisoteriou, E., Kakas, A.C.: Argumentation and temporal persistence. In: Proceedings of the 7th Panhellenic Logic Symposium, Patras, July 15-19 (2009)Google Scholar
  3. 3.
    Kakas, A.C., Mancarella, P., Dung, P.M.: The acceptability semantics for logic programs. In: ICLP, pp. 504–519 (1994)Google Scholar
  4. 4.
    Kakas, A.C., Miller, R.: A simple declarative language for describing narratives with actions. J. Log. Program. 31(1-3), 157–200 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Kakas, A.C., Miller, R., Toni, F.: An Argumentation Framework for Reasoning about Actions and Change. In: Gelfond, M., Leone, N., Pfeifer, G. (eds.) LPNMR 1999. LNCS (LNAI), vol. 1730, pp. 78–91. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Gen. Comput. 4(1), 67–95 (1986)CrossRefGoogle Scholar
  7. 7.
    Miller, R., Shanahan, M.: The event calculus in classical logic - alternative axiomatisations. Electron. Trans. Artif. Intell. 3(A), 77–105 (1999)MathSciNetGoogle Scholar
  8. 8.
    Shanahan, M.: Solving the frame problem - a mathematical investigation of the common sense law of inertia. MIT Press (1997)Google Scholar
  9. 9.
    Thielscher, M.: The Qualification Problem: A Solution to the Problem of Anomalous Models. AIJ 131(1-2), 1–37 (2001)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Evgenios Hadjisoteriou
    • 1
  • Antonis Kakas
    • 1
  1. 1.Dept. of Computer ScienceUniversity of CyprusNicosiaCyprus

Personalised recommendations