What Is Negation as Failure?

  • Dov M. Gabbay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7360)


An equational approach is used to give semantics to negation as failure. We offer an Equational Calculus and in it we define a new completion for programs with negation as failure in the body of clauses. This approach is compared with other approaches in the literature and a connection is established with argumentation theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gabbay, D.: What is negation as failure? (1985) (manuscript)Google Scholar
  2. 2.
    Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg (1987)zbMATHCrossRefGoogle Scholar
  3. 3.
    Clark, K.: Negation as failure (Originally published in 1978); reproduced in Readings in nonmonotonic reasoning, pp. 311–325. Morgan Kaufmann Publishers (1987)Google Scholar
  4. 4.
    Gabbay, D.: An Equational Approach to Argumentation Networks, p. 107 (February 2011); to appear in Argumentation and ComputationGoogle Scholar
  5. 5.
    Gabbay, D.M.: Introducing Equational Semantics for Argumentation Networks. In: Liu, W. (ed.) ECSQARU 2011. LNCS(LNAI), vol. 6717, pp. 19–35. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Gabbay, D., Reyle, U.: N-Prolog: An Extension of Prolog with Hypothetical Implications I. Journal of Logic Programming 1, 319–355 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gabbay, D.M., Sergot, M.: Negation as inconsistency. Journal of Logic Programming 4(3), 1–35 (1986)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Gabbay, D.: Modal Provability Interpretation for Negation by Failure. In: Schroeder-Heister, P. (ed.) ELP 1989. LNCS, vol. 475, pp. 179–222. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  9. 9.
    Miller, D.: A Survey of Linear Logic Programming. Computational Logic: The Newsletter of the European Network in Computational Logic 2(2), 63–67 (1995)Google Scholar
  10. 10.
    Cerrito, S.: A linear axiomatization of negation as failure. Journal of Logic Programming 12, 1–24 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Cerrito, S.: Negation and linear completion. In: Farinas del Cerro, L., Penttonen, M. (eds.) Intensional Logic for Programming, pp. 155–194. Clarendon Press (1992)Google Scholar
  12. 12.
    Fitting, M.: Kripke–Kleene semantics for logic programs. Journal of Logic Programming 2, 295–312 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fitting, M.: Negation As Refutation. In: Parikh, R. (ed.) Proceedings of the Fourth Annual Symposium on Logic in Computer Science, pp. 63–70. IEEE (1978)Google Scholar
  14. 14.
    Kunen, K.: Negation in logic programming. Journal of Logic Programming 4, 289–308 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Giordano, L., Olivetti, N.: Negation as failure in intuitionistic logic programming. In: Proceedings of JICSLP, pp. 431–445 (1992)Google Scholar
  16. 16.
    Harland, J.: A Kripke-like model for negation as failure. In: Proceedings of the North American Conference on Logic Programming (NACLP), Cleveland, Ohio, October 16-20, pp. 626–642 (1989)Google Scholar
  17. 17.
    Bonner, A.J., McCarty, L.T.: Adding Negation-as-Failure to Intuitionistic Logic Programming. Technical report, Department of Computer Science,Rutgers University, New Brunswick, NJ 08903 (1990)Google Scholar
  18. 18.
    Vauzeilles, J.: Negation as Failure and Intuitionistic Three-Valued Logic. In: Jorrand, P., Kelemen, J. (eds.) FAIR 1991. LNCS, vol. 535, pp. 228–241. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  19. 19.
    Balbiani, P.: Modal logic and negation as failure. J. Logic Computation 11, 331–356 (1991)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Mobasher, B., Leszczylowski, J., Slutzki, G., Pigozzi, D.: Negation as Partial Failure. In: LPNMR, pp. 244–262 (1993)Google Scholar
  21. 21.
    Staerk, R.: A Transformation of Propositional Prolog Programs into Classical Logic. In: Marek, V.W., Truszczyński, M., Nerode, A. (eds.) LPNMR 1995. LNCS, vol. 928, pp. 302–315. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  22. 22.
    Staerk, R.: Cut property and negation as failure. International Journal of Foundations of Computer Science (IJFCS) 5(2), 129–164 (1994)zbMATHCrossRefGoogle Scholar
  23. 23.
    Staerk, R.: A complete axiomatization of the three-valued completion of logic programs. J. of Logic and Computation 1(6), 811–834 (1991)zbMATHCrossRefGoogle Scholar
  24. 24.
    Shepherdson, J.C.: Negation as failure 2. The Journal of Logic Programming 2(3), 185–202 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shepherdson, J.C.: Negation as failure: a comparison of Clark’s completed data base and Reiter’s closed world assumption. The Journal of Logic Programming 1(1), 51–79 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gabbay, D.: N-Prolog: An Extension of Prolog with Hypothetical Implications 2. Journal of Logic Programming 2, 251–283 (1986)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Olivetti, N., Terracini, L.: N-Prolog and Equivalence of Logic Programs. Journal of Logic, Language and Information 1(4) (1992)Google Scholar
  28. 28.
    Apt, K.R.,, R.: N Bol. Logic programming and negation: A Survey. J. Logic Programming 19(20), 9–72 (1994)Google Scholar
  29. 29.
    Gabbay, D.: Modal Provability Foundations for Argumentation Networks. Studia Logica 93(2-3), 181–198 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Mints, G.: Complete Calculus for Pure Prolog. Proc. Acad. Sci. Estonian SSR 35, 367–380 (1986) (in Russian)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Shepherdson, J.C.: A Sound and Complete Semantics for a Version of Negation as Failure. Theoret. Comput. Sci. 65(3), 343–371 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Shepherdson, J.C., Mints, G.: Type Calculi for Logic Programming, Report PM-88-01, School of Mathematics, Univ. of Bristol (1988)Google Scholar
  33. 33.
    Apt, K.R., van Emden, M.H.: Contributions to the Theory of Logic Programming. J. Assoc. Comput. Much. 29, 841–862 (1982)zbMATHCrossRefGoogle Scholar
  34. 34.
    Caminada, M., Gabbay, D.: A logical account of formal argumentation. Studia Logica 93(2-3), 109–145 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dov M. Gabbay
    • 1
    • 2
    • 3
  1. 1.Bar Ilan UniversityIsrael
  2. 2.King’s CollegeLondonUK
  3. 3.University of LuxembourgLuxembourg

Personalised recommendations