Managing User-Generated Content as a Knowledge Commons

  • Jeremy Pitt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7360)


In the era of mass-participation content creation (MPCC) through social networking and pervasive computing, a different approach to intellectual property regarding user-generated content is required. One possible approach is to consider the intellectual property rights of MPCC from the perspective of a knowledge commons. Management of knowledge as a commons can then be based on the socio-economic principles of self-governing institutions for common pool resources, and formalised as a self-organising dynamic multi-agent system. In this paper, we describe a testbed for representing MPCC as a knowledge commons, and formalise three management principles, using the Event Calculus, for regulatory compliance, conflict resolution, and collective choice arrangements. Although a preliminary description of work in progress, we believe this approach has potentially significant impact on the use of collective intelligence and knowledge sharing to address systemic problems which threaten the sustainability of institutions and physical infrastructure.


Knowledge Common Regulatory Compliance Alternative Dispute Resolution Earthquake Early Warning System Event Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, A.: Common property institutions and sustainable governance of resources. World Development 29(10), 1649–1672 (2001)CrossRefGoogle Scholar
  2. 2.
    Artikis, A.: Dynamic specification of open agent systems. Journal of Logic and Computation (2011), doi:10.1093/logcom/exr018Google Scholar
  3. 3.
    Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies. In: Castelfranchi, C., Johnson, L. (eds.) Proceedings AAMAS 2002, pp. 1053–1062. ACM Press (2002)Google Scholar
  4. 4.
    Artikis, A., Sergot, M., Pitt, J.: An executable specification of a formal argumentation protocol. Artificial Intelligence 171(10-15), 776–804 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies. ACM Transactions on Computational Logic 10(1), 1–42 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cox, M., Arnold, G., Villamayor Tomás, S.: A review of design principles for community-based natural resource management. Ecology and Society 15(4), 38 (2010)Google Scholar
  7. 7.
    Grosz, B., Kraus, S., Talman, S., Stossel, B., Havlin, M.: The influence of social dependencies on decision-making: Initial investigations with a new game. In: Proc. 3rd Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pp. 782–789 (2004)Google Scholar
  8. 8.
    Hess, C., Ostrom, E. (eds.): Understanding Knowledge as a Commons: From Theory to Practice. MIT Press, Cambridge (2011)Google Scholar
  9. 9.
    Jones, A., Sergot, M.: A formal characterisation of institutionalised power. Journal of the IGPL 4(3), 427–443 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kowalski, R., Sergot, M.: A logic-based calculus of events. New Generation Computing 4, 67–95 (1986)CrossRefGoogle Scholar
  11. 11.
    Neville, B., Pitt, J.: PRESAGE: A Programming Environment for the Simulation of Agent Societies. In: Hindriks, K.V., Pokahr, A., Sardina, S. (eds.) ProMAS 2008. LNCS, vol. 5442, pp. 88–103. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Oreskes, N., Conway, E.: Merchants of Doubt: How a Handful of Scientists Obscured the Truth on Issues from Tobacco Smoke to Global Warming. Bloomsbury Press, London (2010)Google Scholar
  13. 13.
    Ostrom, E.: Governing the Commons. CUP, Cambridge (1990)Google Scholar
  14. 14.
    Ostrom, E., Hess, C.: A framework for analyzing the knowledge commons. In: Hess, C., Ostrom, E. (eds.) Understanding Knowledge as a Commons: From Theory to Practice, pp. 41–82. MIT Press, Cambridge (2006)Google Scholar
  15. 15.
    Pitt, J., Kamara, L., Sergot, M., Artikis, A.: Voting in multi-agent systems. Computer Journal 49(2), 156–170 (2006)CrossRefGoogle Scholar
  16. 16.
    Pitt, J., Schaumeier, J., Artikis, A.: The axiomatisation of socio-economic principles for self-organising systems. In: Fifth IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 138–147 (2011)Google Scholar
  17. 17.
    Pitt, J., Schaumeier, J., Artikis, A.: Coordination, Conventions and the Self-organisation of Sustainable Institutions. In: Kinny, D., Hsu, J.Y.-j., Governatori, G., Ghose, A.K. (eds.) PRIMA 2011. LNCS, vol. 7047, pp. 202–217. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  18. 18.
    Regner, T., Barria, J., Pitt, J., Neville, B.: Governance of digital content in the era of mass participation. Electronic Commerce Research 10(1), 99–110 (2010)CrossRefGoogle Scholar
  19. 19.
    Reynolds, C., Picard, R.: Affective sensors, privacy, and ethical contracts. In: Proceedings CHI 2004 Extended Abstracts on Human Factors in Computing Systems, pp. 1103–1106 (2004)Google Scholar
  20. 20.
    Robert, S., Robert, H., Evans, W., Honemann, D., Balch, T.: Robert’s Rules of Order, Newly Revised, 10th edn. Perseus Publishing, Cambridge (2000)Google Scholar
  21. 21.
    Shum, S.B., Aberer, K., Schmidt, A., Bishop, S., Lukowicz, P., Anderson, A., Charalabidis, Y., Domingue, J., de Freitas, S., Dunwell, I., Edmonds, B., Grey, F., Haklay, M., Jelasity, M., Kohlhammer, J., Lewis, J., Nowak, A., Pitt, J., Sumner, R., Helbing, D.: Democratising big data, complexity modelling and collective intelligence. FuturICT White Paper (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jeremy Pitt
    • 1
  1. 1.Institute for Security Science and TechnologyImperial College LondonLondonUK

Personalised recommendations