Symbolic Model Checking for Temporal-Epistemic Logic

  • Alessio Lomuscio
  • Wojciech Penczek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7360)

Abstract

We survey some of the recent work in verification via symbolic model checking of temporal-epistemic logic. Specifically, we discuss OBDD-based and SAT-based approaches for epistemic logic built on discrete and real-time branching time temporal logic. The underlying semantical model considered throughout is the one of interpreted system, suitably extended whenever necessary.

Keywords

Model Check Boolean Function Temporal Logic Epistemic Logic Boolean Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdulla, P.A., Bjesse, P., Eén, N.: Symbolic Reachability Analysis Based on SAT-Solvers. In: Graf, S. (ed.) TACAS 2000. LNCS, vol. 1785, pp. 411–425. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Ball, T., Podelski, A., Rajamani, S.K.: Boolean and Cartesian Abstraction for Model Checking C Programs. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 268–283. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking. In: Highly Dependable Software. Advances in Computers, vol. 58. Academic Press (2003) (preprint)Google Scholar
  5. 5.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press (2001)Google Scholar
  7. 7.
    Bryant, R.: Graph-based algorithms for boolean function manipulation. IEEE Transaction on Computers 35(8), 677–691 (1986)MATHCrossRefGoogle Scholar
  8. 8.
    Burch, J.R., Clarke, E., McMillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model checking: 1020 states and beyond. Information and Computation 98(2), 142–170 (1990)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chauhan, P., Clarke, E., Kroening, D.: Using SAT-based image computation for reachability analysis. Technical Report CMU-CS-03-151, Carnegie Mellon University (July 2003)Google Scholar
  10. 10.
    Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untraceability. Journal of Cryptology 1(1), 65–75 (1988)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A New Symbolic Model Verifier. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 495–499. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Clarke, E., Filkorn, T., Jha, S.: Exploiting Symmetry in Temporal Logic Model Checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 450–462. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  13. 13.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)Google Scholar
  14. 14.
    Cohen, M., Dam, M., Lomuscio, A., Qu, H.: A Data Symmetry Reduction Technique for Temporal-epistemic Logic. In: Liu, Z., Ravn, A.P. (eds.) ATVA 2009. LNCS, vol. 5799, pp. 69–83. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking multi-agent systems. In: AAMAS, vol. 2, pp. 945–952 (2009)Google Scholar
  16. 16.
    Dams, D., Gerth, R., Dohmen, G., Herrmann, R., Kelb, P., Pargmann, H.: Model Checking using Adaptive State and Data Abstraction. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 455–467. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  17. 17.
    Dembinski, P., Janowska, A., Janowski, P., Penczek, W., Półrola, A., Szreter, M., Woźna, B., Zbrzezny, A.: \(\surd\)erics: A Tool for Verifying Timed Automata and Estelle Specifications. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 278–283. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Emerson, E.A., Jutla, C.S.: Symmetry and Model Checking. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 463–478. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  19. 19.
    Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in System Design 9, 105–131 (1995)CrossRefGoogle Scholar
  20. 20.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cambridge (1995)MATHGoogle Scholar
  21. 21.
    Gammie, P., van der Meyden, R.: MCK: Model Checking the Logic of Knowledge. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Ganai, M., Gupta, A., Ashar, P.: Efficient SAT-based unbounded symbolic model checking using circuit cofactoring. In: Proc. of the Int. Conf. on Computer-Aided Design (ICCAD 2004), pp. 510–517 (2004)Google Scholar
  23. 23.
    Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branching time logic model checking. Information and Computation 150, 132–152 (1999)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Halpern, J., Moses, Y.: Knowledge and common knowledge in a distributed environment. Journal of the ACM 37(3), 549–587 (1990); A preliminary version appeared in Proc. 3rd ACM Symposium on Principles of Distributed Computing (1984)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Halpern, J., Vardi, M.: Model checking vs. theorem proving: a manifesto. In: Artificial Intelligence and Mathematical Theory of Computation, pp. 151–176. Academic Press, Inc. (1991)Google Scholar
  26. 26.
    Hintikka, J.: Knowledge and Belief, An Introduction to the Logic of the Two Notions. Cornell University Press, Ithaca (1962)Google Scholar
  27. 27.
    van der Hoek, W., Wooldridge, M.: Model Checking Knowledge and Time. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 95–111. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  28. 28.
    Holzmann, G.J.: The model checker SPIN. IEEE Transaction on Software Engineering 23(5), 279–295 (1997)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Huang, X., Luo, C., van der Meyden, R.: Improved Bounded Model Checking for a Fair Branching-Time Temporal Epistemic Logic. In: van der Meyden, R., Smaus, J.-G. (eds.) MoChArt 2010. LNCS, vol. 6572, pp. 95–111. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Huth, M.R.A., Ryan, M.D.: Logic in Computer Science: Modelling and Reasoning about Systems. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  31. 31.
    Jones, A.V., Lomuscio, A.: Distributed bdd-based bmc for the verification of multi-agent systems. In: AAMAS, pp. 675–682. IFAAMAS (2010)Google Scholar
  32. 32.
    Kacprzak, M., Lomuscio, A., Niewiadomski, A., Penczek, W., Raimondi, F., Szreter, M.: Comparing BDD and SAT based techniques for model checking Chaum’s dining cryptographers protocol. Fundamenta Informaticae 63(2,3), 221–240 (2006)MathSciNetGoogle Scholar
  33. 33.
    Kacprzak, M., Lomuscio, A., Penczek, W.: Unbounded model checking for knowledge and time. Technical Report 966, ICS PAS, Ordona 21, 01-237 Warsaw (December 2003)Google Scholar
  34. 34.
    Kacprzak, M., Lomuscio, A., Penczek, W.: From bounded to unbounded model checking for temporal epistemic logic. Fundamenta Informaticae 63(2-3), 221–240 (2004)MathSciNetMATHGoogle Scholar
  35. 35.
    Kacprzak, M., Nabialek, W., Niewiadomski, A., Penczek, W., Pólrola, A., Szreter, M., Wozna, B., Zbrzezny, A.: VerICS 2007 - a model checker for knowledge and real-time. Fundam. Inform. 85(1-4), 313–328 (2008)MATHGoogle Scholar
  36. 36.
    Kang, I., Lee, I.: An efficient state space generation for the analysis of real-time systems. In: Proc. of Int. Symposium on Software Testing and Analysis (1996)Google Scholar
  37. 37.
    Kwiatkowska, M.Z., Lomuscio, A., Qu, H.: Parallel model checking for temporal epistemic logic. In: ECAI. Frontiers in Artificial Intelligence and Applications, vol. 215, pp. 543–548. IOS Press (2010)Google Scholar
  38. 38.
    Lenzen, W.: Recent work in epistemic logic. Acta Philosophica Fennica, vol. 30. North-Holland, Amsterdam (1978)Google Scholar
  39. 39.
    Lomuscio, A., Penczek, W., Qu, H.: Partial order reductions for model checking temporal-epistemic logics over interleaved multi-agent systems. Fundam. Inform. 101(1-2), 71–90 (2010)MathSciNetMATHGoogle Scholar
  40. 40.
    Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A Model Checker for the Verification of Multi-Agent Systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 682–688. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  41. 41.
    Lomuscio, A., Qu, H., Russo, F.: Automatic Data-Abstraction in Model Checking Multi-Agent Systems. In: van der Meyden, R., Smaus, J.-G. (eds.) MoChArt 2010. LNCS, vol. 6572, pp. 52–68. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  42. 42.
    Lomuscio, A., Woźna, B., Penczek, W.: Bounded model checking for knowledge over teal time. Artificial Intelligence 171(16-17), 1011–1038 (2007)MathSciNetMATHCrossRefGoogle Scholar
  43. 43.
    Malinowski, J., Niebert, P.: SAT Based Bounded Model Checking with Partial Order Semantics for Timed Automata. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 405–419. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  44. 44.
    van der Mayden, R., Su, K.: Symbolic model checking the knowledge of the dining cryptographers. In: Proc. of the 17th IEEE Computer Security Foundations Workshop (CSFW-17), pp. 280–291. IEEE Computer Society Press (2004)Google Scholar
  45. 45.
    MCK: Model checking knowledge, http://www.cse.unsw.edu.au/~mck
  46. 46.
  47. 47.
    McMillan, K.: Symbolic model checking: An approach to the state explosion problem. Kluwer Academic Publishers (1993)Google Scholar
  48. 48.
    McMillan, K.L.: Applying SAT Methods in Unbounded Symbolic Model Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 250–264. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  49. 49.
    Meski, A., Penczek, W., Szreter, M., Woźna-Szcześniak, B., Zbrzezny, A.: Bounded model checking for knowledge and linear time. In: AAMAS (2012)Google Scholar
  50. 50.
    van der Meyden, R., Shilov, N.V.: Model Checking Knowledge and Time in Systems with Perfect Recall. In: Pandu Rangan, C., Raman, V., Sarukkai, S. (eds.) FST TCS 1999. LNCS, vol. 1738, pp. 432–445. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  51. 51.
    Parikh, R., Ramanujam, R.: Distributed processes and the logic of knowledge. In: Logic of Programs, pp. 256–268 (1985)Google Scholar
  52. 52.
    Peled, D.: All From One, One for All: On Model Checking using Representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  53. 53.
    Penczek, W., Lomuscio, A.: Verifying epistemic properties of multi-agent systems via bounded model checking. Fundamenta Informaticae 55(2), 167–185 (2003)MathSciNetMATHGoogle Scholar
  54. 54.
    Penczek, W., Półrola, A.: Advances in Verification of Time Petri Nets and Timed Automata: A Temporal Logic Approach. SCI, vol. 20. Springer, Heidelberg (2006)MATHCrossRefGoogle Scholar
  55. 55.
    Penczek, W., Woźna, B., Zbrzezny, A.: Bounded model checking for the universal fragment of CTL. Fundamenta Informaticae 51(1-2), 135–156 (2002)MathSciNetMATHGoogle Scholar
  56. 56.
    Raimondi, F.: Model Checking Multi-Agent Systems. PhD thesis, University of London (2006)Google Scholar
  57. 57.
    Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model checking via OBDDs. Journal of Applied Logic 5 (2007)Google Scholar
  58. 58.
    Rosenschein, S.J.: Formal theories of AI in knowledge and robotics. New Generation Computing 3, 345–357 (1985)MATHCrossRefGoogle Scholar
  59. 59.
    Somenzi, F.: CUDD: CU decision diagram package - release 2.4.0 (2005), http://vlsi.colorado.edu/~fabio/CUDD/cuddIntro.html
  60. 60.
    Szreter, M.: Selective Search in Bounded Model Checking of Reachability Properties. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707, pp. 159–173. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  61. 61.
    Szreter, M.: Generalized blocking clauses in unbounded model checking. In: Proc. of the 3rd Int. Workshop on Constraints in Formal Verification, CFV 2005 (2006)Google Scholar
  62. 62.
  63. 63.
    Woźna, B., Lomuscio, A., Penczek, W.: Bounded model checking for deontic interpreted systems. In: Proc. of the 2nd Int. Workshop on Logic and Communication in Multi-Agent Systems (LCMAS 2004). ENTCS, vol. 126, pp. 93–114. Elsevier (2005)Google Scholar
  64. 64.
    Zbrzezny, A.: Improving the translation from ECTL to SAT. Fundam. Inform. 85(1-4), 513–531 (2008)MathSciNetMATHGoogle Scholar
  65. 65.
    Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Efficient conflict driven learning in a boolean satisfiability solver. In: Proc. of Int. Conf. on Computer-Aided Design (ICCAD 2001), pp. 279–285 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alessio Lomuscio
    • 1
  • Wojciech Penczek
    • 2
  1. 1.Department of ComputingImperial College LondonUK
  2. 2.ICS PAS Warsaw and UPH SiedlcePoland

Personalised recommendations