Advertisement

Komplikationsmanagement

  • U. Boeken
  • A. Assmann
  • F. Born
  • C. Schmid
Chapter
  • 2.7k Downloads

Zusammenfassung

Ein rechtsventrikuläres Versagen kann bereits präoperativ bestehen oder erst perioperativ entstehen. Es kann auch spät nach Implantation eines LVAD zum Tragen kommen. In diesem Kapitel werden wir uns mit der Vorhersage dieses Phänomens beschäftigen und die perioperativen Maßnahmen zur Prävention und Therapie besprechen. Weiterhin werden Diagnose und Therapiemöglichkeiten des späten rechtsventrikulären Versagens besprochen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Literatur zu 9.1

  1. Adamson RM, Dembitsky WP, Baradarian S, Chammas J, May-Newman K et al (2011) Aortic valve closure associated with HeartMate left ventricular device support: technical considerations and long-term results. J Heart Lung Transplant 30(5): 576-582PubMedCrossRefGoogle Scholar
  2. Argenziano M, Choudhri AF, Moazami N, Rose EA, Smith CR et al (1998) Randomized, doubleblind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg 1998;65(2): 340-345PubMedCrossRefGoogle Scholar
  3. Atz AM, Lefler AK, Fairbrother DL, Uber WE, Bradley SM (2002) Sildenafil augments the effect of inhaled nitric oxide for postoperative pulmonary hypertensive crises. J Thorac Cardiovasc Surg 124(3): 628-629PubMedCrossRefGoogle Scholar
  4. Baumwol J, Macdonald PS, Keogh AM, Kotlyar E, Spratt P et al (2011) Right heart failure and »failure to thrive« after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant 30(8): 888-895PubMedGoogle Scholar
  5. Cave AC, Manche A, Derias NW, Hearse DJ (1993) Thromboxane A2 mediates pulmonary hypertension after cardiopulmonary bypass in the rabbit. J Thorac Cardiovasc Surg 106(6): 959-967PubMedGoogle Scholar
  6. Cohn WE, Demirozu ZT, Frazier OH (2011) Surgical closure of left ventricular outflow tract after left ventricular assist device implantation in patients with aortic valve pathology. J Heart Lung Transplant 30(1): 59-63PubMedCrossRefGoogle Scholar
  7. Cohn WE, Frazier OH (2011) The sandwich plug technique: simple, effective, and rapid closure of a mechanical aortic valve prosthesis at left ventricular assist device implantation. J Thorac Cardiovasc Surg 142(2): 455-457PubMedCrossRefGoogle Scholar
  8. Dranishnikov N, Stepanenko A, Potapov E, Dandel M, Sinawski H et al (2012) Simultaneous aortic valve replacement in left ventricular assist device recipients: Single-center experience. Int J Artif Organs 35(7): 489-494 doi: 10.5301/ijao.5000102PubMedGoogle Scholar
  9. Fitzpatrick JR, 3rd, Frederick JR, Hsu VM, Kozin ED, O’Hara ML et al (2008) Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant 27(12): 1286-1292PubMedCrossRefGoogle Scholar
  10. Fratacci MD, Frostell CG, Chen TY, Wain JC, Jr., Robinson DR, Zapol WM (1991). Inhaled nitric oxide. A selective pulmonary vasodilator of heparin-protamine vasoconstriction in sheep. Anesthesiol 75(6): 990-999CrossRefGoogle Scholar
  11. Fukamachi K, McCarthy PM, Smedira NG, Vargo RL, Starling RC, Young JB (1999) Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg 68(6): 2181-2184PubMedCrossRefGoogle Scholar
  12. Ghofrani HA, Wiedemann R, Rose F, Olschewski H, Schermuly RT et al (2002) Combination therapy with oral sildenafil and inhaled iloprost for severe pulmonary hypertension. Ann Intern Med 136(7): 515-522PubMedGoogle Scholar
  13. Griffith KE, Jenkins E, Stulak J, Paugh T, Pagani FD (2012) Long-term use of the CentriMag Ventricular Assist System as a right ventricular assist device: a case report. Perfusion 27(1): 65-70 Epub 2011 Oct 24PubMedCrossRefGoogle Scholar
  14. Hetzer R, Krabatsch T, Stepanenko A, Hennig E, Potapov EV (2010) Long-term biventricular support with the heartware implantable continuous flow pump. J Heart Lung Transplant 29(7): 822-824PubMedCrossRefGoogle Scholar
  15. Hsu PL, Parker J, Egger C, Autschbach R, Schmitz-Rode T, Steinseifer U (2012) Mechanical Circulatory Support for Right Heart Failure: Current Technology and Future Outlook. Artif Organs 36(4): 332-347 Epub 2011 Dec 8PubMedCrossRefGoogle Scholar
  16. Kirklin JK, Naftel DC, Stevenson LW, Kormos RL, Pagani FD. et al (2008) INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant 27(10): 1065-1072PubMedCrossRefGoogle Scholar
  17. Kormos RL, Gasior TA, Kawai A, Pham SM, Murali S et al (1996) Transplant candidate’s clinical status rather than right ventricular function defines need for univentricular versus biventricular support. J Thorac Cardiovasc Surg 111(4): 773-782; discussion 782-783PubMedCrossRefGoogle Scholar
  18. Krabatsch T, Potapov E, Stepanenko A, Schweiger M, Kukucka M et al (2011a) Biventricular circulatory support with two miniaturized implantable assist devices. Circulation 124 (11 Suppl): S179-186CrossRefGoogle Scholar
  19. Krabatsch T, Schweiger M, Stepanenko A, Drews T, Potapov E et al (2011b) Improvements in implantable mechanical circulatory support systems : literature overview and update Herz 36(7): 622-629CrossRefGoogle Scholar
  20. Krishan K, Nair A, Pinney S, Adams DH, Anyanwu AC (2012) Liberal use of tricuspid-valve annuloplasty during left-ventricular assist device implantation. Eur J Cardiothorac Surg 41(1): 213-217PubMedCrossRefGoogle Scholar
  21. Kukucka M, Potapov E, Stepanenko A, Weller K, Mladenow A et al (2011a) Acute impact of left ventricular unloading by left ventricular assist device on the right ventricle geometry and function: Effect of nitric oxide inhalation. J Thorac Cardiovasc Surg 141(4): 1009-1014 Epub 2010 Sep 29Google Scholar
  22. Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Redlin M et al (2011b) Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant 30(1): 64-69 Epub 2010 Oct 29CrossRefGoogle Scholar
  23. Leather HA, Segers P, Berends N, Vandermeersch E, Wouters PF (2002) Effects of vasopressin on right ventricular function in an experimental model of acute pulmonary hypertension. Crit Care Med 30(11): 2548-2552PubMedCrossRefGoogle Scholar
  24. Lepore JJ, Maroo A, Bigatello LM, Dec GW, Zapol WM et al (2005) Hemodynamic effects of sildenafil in patients with congestive heart failure and pulmonary hypertension: combined administration with inhaled nitric oxide. Chest 127(5): 1647-1653PubMedCrossRefGoogle Scholar
  25. Loforte A, Montalto A, Lilla Della Monica P, Musumeci F (2011) Simultaneous temporary CentriMag right ventricular assist device placement in HeartMate II left ventricular assist system recipients at high risk of right ventricular failure. Interact Cardiovasc Thorac Surg 10(6): 847-850CrossRefGoogle Scholar
  26. Loforte A, Stepanenko A, Potapov E, Dranischnikov N, Schweiger M et al (2012) Temporary versus permanent biventricular support in end-stage refractory biventricular failure. in pressGoogle Scholar
  27. Maltais S, Topilsky Y, Tchantchaleishvili V, McKellar SH, Durham LA et al (2012) Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial-flow left ventricular assist devices. J Thorac Cardiovasc Surg 143(6): 1370-1376 Epub 2011 Aug 11PubMedCrossRefGoogle Scholar
  28. Matthews JC, Koelling TM, Pagani FD, Aaronson KD (2008) The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol51(22): 2163-2172PubMedCrossRefGoogle Scholar
  29. May-Newman K, Hillen B, Dembitsky W (2006) Effect of left ventricular assist device outflow conduit anastomosis location on flow patterns in the native aorta. Asaio J 52(2): 132-139PubMedCrossRefGoogle Scholar
  30. Nagendran J, Archer SL, Soliman D, Gurtu V, Moudgil R et al (2007) Phosphodiesterase type 5 is highly expressed in the hypertrophied human right ventricle, and acute inhibition of phosphodiesterase type 5 improves contractility. Circulation 116(3): 238-248PubMedCrossRefGoogle Scholar
  31. Oz MC, Argenziano M, Catanese KA, Gardocki MT, Goldstein DJ et al (1997) Bridge experience with long-term implantable left ventricular assist devices. Are they an alternative to transplantation? Circulation 1997;95(7):1844-1852Google Scholar
  32. Pettinari M, Jacobs S, Rega F, Verbelen T, Droogne W, Meyns B (2012) Are right ventricular risk scores useful? Eur J Cardiothorac Surg 2012 Apr 19, [Epub ahead of print]Google Scholar
  33. Piacentino V 3rd, Williams ML, Depp T, Garcia-Huerta K, Blue L et al (2011) Impact of tricuspid valve regurgitation in patients treated with implantable left ventricular assist devices. Ann Thorac Surg 91(5):1342-6; discussion 1346-1347PubMedCrossRefGoogle Scholar
  34. Potapov EV, Loforte A, Weng Y, Jurmann M, Pasic M et al (2008a) Experience with over 1000 Implanted Ventricular Assist Devices. J Card Surg 23(3): 185-194CrossRefGoogle Scholar
  35. Potapov E, Meyer D, Swaminathan M, Ramsay M, El Banayosy A et al (2011a) Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant 30(8): 870-878Google Scholar
  36. Potapov EV, Schweiger M, Stepanenko A, Dandel M, Kukucka M et al (2011b) Tricuspid valve repair in patients supported with left ventricular assist devices. Asaio J 57(5): 363-7CrossRefGoogle Scholar
  37. Potapov EV, Sodian R, Loebe M, Drews T, Dreysse S, Hetzer R (2001) Revascularization of the occluded right coronary artery during left ventricular assist device implantation. J Heart Lung Transplant 20(8): 918-922PubMedCrossRefGoogle Scholar
  38. Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB et al (2008b) Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant 27(12): 1275-1281CrossRefGoogle Scholar
  39. Puwanant S, Hamilton KK, Klodell CT, Hill JA, Schofield RS et al (2008) Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant 27(10): 1102-1107PubMedCrossRefGoogle Scholar
  40. Rioux JP, Lessard M, De Bortoli B, Roy P, Albert M et al (2009) Pentastarch 10% (250 kDa/0.45) is an independent risk factor of acute kidney injury following cardiac surgery. Crit Care Med 37(4): 1293-1298PubMedCrossRefGoogle Scholar
  41. Saeed D, Kidambi T, Shalli S, Lapin B, Malaisrie SC et al (2011) Tricuspid valve repair with left ventricular assist device implantation: is it warranted? J Heart Lung Transplant 30(5): 530-535PubMedCrossRefGoogle Scholar
  42. Stulak JM, Griffith KE, Nicklas JM, Pagani FD (2011) The use of the HeartWare HVAD for long-term right ventricular support after implantation of the HeartMate II device. J Thorac Cardiovasc Surg 142(3): e140-142CrossRefGoogle Scholar
  43. Viitanen A, Salmenpera M, Heinonen J (1990) Right ventricular response to hypercarbia after cardiac surgery. Anesthesiol 73(3): 393-400CrossRefGoogle Scholar
  44. Wan S, LeClerc JL, Vincent JL (1997) Inflammatory response to cardiopulmonary bypass: mechanisms involved and possible therapeutic strategies. Chest 112(3): 676-692PubMedCrossRefGoogle Scholar
  45. Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ et al (2012) Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant 31(2): 140-149PubMedCrossRefGoogle Scholar

Literatur zu 9.2

  1. Amir O, Bracey AW, Smart FW, Delgado RM 3rd, Shah N, Kar B (2005) A successful anticoagulation protocol for the first HeartMate II implantation in the United States.Tex Heart Inst J 32:399-401Google Scholar
  2. Angermayr L, Garrido MV, Busse R (2007) Künstliche Ventrikel bei fortgeschrittener Herzinsuffizinez. Deutsches Institut für Medizinische Dokumentation und Information, KölnGoogle Scholar
  3. Braunwald E, Angiolillo D, Bates E, Berger PB, Bhatt D et al (2008) Assessing the current role of platelet function testing. Clin Cardiol 31(3 Suppl 1):I10-I16CrossRefGoogle Scholar
  4. Caccamo M, Eckman P, John R (2011) Current state of ventricular assist devices. Curr Heart Fail Rep 8:91-98PubMedCrossRefGoogle Scholar
  5. Christiansen S, Jahn UR, Meyer J, Scheld HH, Van Aken H et al (2000) Anticoagulative management of patients requiring left ventricular assist device implantation and suffering from heparin-induced thrombocytopenia type II. Ann Thorac Surg 69:774-777PubMedCrossRefGoogle Scholar
  6. Drews T, Jurmann M, Michael D, Miralem P, Weng Y, Hetzer R (2008) Differences in pulsatile and non-pulsatile mechanical circulatory support in long-term use. J Heart Lung Transplant 27:1096-1101PubMedCrossRefGoogle Scholar
  7. John R, Kamdar F, Liao K, Colvin-Adams M, Miller L et al (2008) Low thromboembolic risk for patients with the Heartmate II left ventricular assist device. J Thorac Cardiovasc Surg 136:1318-1323PubMedCrossRefGoogle Scholar
  8. Kalya AV, Tector AJ, Crouch JD, Downey FX, McDonald ML et al (2005) Comparison of Novacor and HeartMate vented electric left ventricular assist devices in a single institution. J Heart Lung Transplant 24:1973-1975PubMedCrossRefGoogle Scholar
  9. Körfer R, El-Banayosy A (2004) Mechanische Kreislaufunterstützung - 15 Jahre Erfahrung im Herzzentrum Nordrhein-Westfalen. Dtsch Med Wochenschr 129:800-804PubMedCrossRefGoogle Scholar
  10. Liden H, Wierup P, Westerberg M, Nilsson F, Wiklund L (2005) Bridge to heart transplantation with the HeartMate device in Gothenburg, Sweden. Transplant Proc 37:3321-3322PubMedCrossRefGoogle Scholar
  11. Morgan JA, Park Y, Oz MC, Naka Y (2003) Device related infections while on left ventricular assist device support do not adversely impact bridging to transplant or posttransplant survival. ASAIO J 49:748-750PubMedCrossRefGoogle Scholar
  12. Morgan JA, John R, Rao V, Weinberg AD, Lee BJ et al (2004) Bridging to transplant with the HeartMate left ventricular assist device: The Columbia Presbyterian 12-year experience. J Thorac Cardiovasc Surg 127:1309-1316PubMedCrossRefGoogle Scholar
  13. Panzica MF (2010) Detektion und akustikophysikalische Analyse von mikroembolischen Signalen mittels transkranieller Zweikanal-Dopplersonografie bei terminal herzinsuffizienten Patienten mit pulsatilem linksventrikulären Unerstützungssystem und deren Korrelation zu klinischen und hämostaseologischen Partametern. Inaugural-Dissertaton, Medizinische Fakultät, Westfälische Wilhelms-Universität MünsterGoogle Scholar
  14. Pereira NL, Chen D, Kushwaha SS, Park SJ (2010) Discontinuation of antithrombotic therapy for a year or more in patients with continuous-flow left ventricular assist devices. Interact Cardiovasc Thorac Surg 11:503-505PubMedCrossRefGoogle Scholar
  15. Schmid C, Jurmann M, Birnbaum D, Colombo T, Falk V et al (2008) Influence of inflow cannula length in axial-flow pumps on neurologic adverse event rate: results from a multi-center analysis. J Heart Lung Transplant 27:253-260PubMedCrossRefGoogle Scholar
  16. Siebler M, Nachtmann A, Sitzer M, Steinmetz H (1994) Anticoagulation monitoring and cerebral microemboli detection. Lancet 344:555PubMedCrossRefGoogle Scholar
  17. Slaughter MS, Sobieski MA, Gallagher C, Dia M, Silver MA (2008) Low incidence of neurologic events during long-term support with the HeartMate XVE left ventricular assist device. Tex Heart Inst J 35:245-249PubMedGoogle Scholar
  18. Strueber M, O’Driscoll G, Jansz P, Khaghani A, Levy WC, Wieselthaler GM; HeartWare Investigators (2011) Multicenter evaluation of an intrapericardial left ventricular assist system. J Am Coll Cardiol 57:1375-1382PubMedCrossRefGoogle Scholar
  19. Topkara VK, Dang NC, Martens TP, Cheema FH, Liu JF, Argenziano M, Naka Y (2005) Bridging to transplantation with left ventricular assist devices: outcomes in patients aged 60 years and older. J Thorac Cardiovasc Surg 130:881-882PubMedCrossRefGoogle Scholar
  20. Vitali E, Lanfranconi M, Bruschi G, Ribera E, Garatti A et al (2004) Mechanical circulatory support in severe heart failure: single-center experience. Transplant Proc 36:620-622PubMedCrossRefGoogle Scholar
  21. Weitkemper HH, El-Banayosy A, Arusoglu L, Sarnowski P, Körfer R (2004) Mechanical circulatory support: reality and dreams experience of a single center. J Extra Corpor Technol 36:169-173PubMedGoogle Scholar
  22. Wieselthaler GM, O Driscoll G, Jansz P, Khaghani A, Strueber M; HVAD Clinical Investigators (2010) Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant 29:1218-1225PubMedCrossRefGoogle Scholar

Literatur zu 9.3

  1. Ahmed TM, Cowley JB, Robinson G, Hartley JE, Nicholson AA et al (2010). Long term follow-up of transcatheter coil embolotherapy for major colonic haemorrhage. Colorectal Dis 12: 1013-1017PubMedCrossRefGoogle Scholar
  2. Cannegieter SC, van Der Meer FJ, Briet E Rosendaal FR (1994). Warfarin and aspirin after heart- valve replacement. N Engl J Med 330: 507-508; author reply 508-509PubMedCrossRefGoogle Scholar
  3. Chua AE Ridley LJ (2008). Diagnostic accuracy of CT angiography in acute gastrointestinal bleeding. J Med Imaging Radiat Oncol 52: 333-338PubMedCrossRefGoogle Scholar
  4. Crow S, John R, Boyle A, Shumway S, Liao K et al (2009). Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices. J Thorac Cardiovasc Surg 137: 208-215PubMedCrossRefGoogle Scholar
  5. Crow S, Milano C, Joyce L, Chen D, Arepally G et al (2010). Comparative analysis of von Willebrand factor profiles in pulsatile and continuous left ventricular assist device recipients. Asaio J 56(5): 441-445PubMedCrossRefGoogle Scholar
  6. Fang JC (2009). Rise of the machines–left ventricular assist devices as permanent therapy for advanced heart failure. N Engl J Med 361: 2282-2285PubMedCrossRefGoogle Scholar
  7. Frazier OH (2000). Mechanical cardiac assistance: historical perspectives. Semin Thorac Cardiovasc Surg 12: 207-219PubMedGoogle Scholar
  8. Geffroy Y, Rodallec MH, Boulay-Coletta I, Fulles MC, Ridereau-Zins C, Zins M (2011). Multidetector CT angiography in acute gastrointestinal bleeding: why, when, and how. Radiographics 31: E35-46CrossRefGoogle Scholar
  9. Geisen U, Heilmann C, Beyersdorf F, Benk C, Berchtold-Herz M et al (2008). Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg 33: 679-684PubMedCrossRefGoogle Scholar
  10. Gregoric ID, Cohn WE, Frazier OH (2011) Diaphragmatic implantation of the HeartWare ventricular assist device. J Heart Lung Transplant 30: 467-470PubMedCrossRefGoogle Scholar
  11. Hayes HM, Dembo LG, Larbalestier R, O’Driscoll G (2010) Management options to treat gastro- intestinal bleeding in patients supported on rotary left ventricular assist devices: a singlecenter experience. Artif Organs 34(9): 703-706PubMedCrossRefGoogle Scholar
  12. Jaeckle T, Stuber G, Hoffmann MH, Freund W, Schmitz BL, Aschoff AJ (2008). Acute gastrointestinal bleeding: value of MDCT. Abdom Imaging 33: 285-293PubMedCrossRefGoogle Scholar
  13. John R, Kamdar F, Liao K, Colvin-Adams M, Boyle A, Joyce L (2008). Improved survival and decreasing incidence of adverse events with the HeartMate II left ventricular assist device as bridge-to-transplant therapy. Ann Thorac Surg 86: 1227-1234; discussion 1234-1225PubMedCrossRefGoogle Scholar
  14. John R, Lee S (2009) The biological basis of thrombosis and bleeding in patients with ventricular assist devices. J Cardiovasc Transl Res 2: 63-70PubMedCrossRefGoogle Scholar
  15. Joyce DD, Crow SS (2011). Bleeding Complications of Continous Flow. Mechanical Circulatory Support. D. L. Joyce, L. D. Joyce and M. Loebe. New York, Mc Graw Hil Medical: 90-92Google Scholar
  16. Klovaite J, Gustafsson F, Mortensen SA, Sander K, Nielsen LB (2009). Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (HeartMate II). J Am Coll Cardiol 53: 2162-2167PubMedCrossRefGoogle Scholar
  17. Koster A, Loebe M, Hansen R, Potapov EV, Noon GP et al (2000). Alterations in coagulation after implantation of a pulsatile Novacor LVAD and the axial flow MicroMed DeBakey LVAD. Ann Thorac Surg 70: 533-537PubMedCrossRefGoogle Scholar
  18. Laing CJ, Tobias T, Rosenblum DI, Banker WL, Tseng L, Tamarkin SW (2007). Acute gastrointestinal bleeding: emerging role of multidetector CT angiography and review of current imaging techniques. Radiographics 27: 1055-1070PubMedCrossRefGoogle Scholar
  19. Love JW, Jahnke EJ, Zacharias D, Davidson WA, Kidder WR, Luan LL (1980). Calcific aortic stenosis and gastrointestinal bleeding. N Engl J Med 302: 968PubMedCrossRefGoogle Scholar
  20. Massyn MW, Khan SA (2009). Heyde syndrome: a common diagnosis in older patients with severe aortic stenosis. Age Ageing 38: 267-270; discussion 251PubMedCrossRefGoogle Scholar
  21. Meyer AL, Malehsa D, Bara C, Budde U, Slaughter MS et al (2010) Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail 3(6):675-81. Epub 2010 Aug 25PubMedCrossRefGoogle Scholar
  22. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ et al (2007). Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357: 885-896PubMedCrossRefGoogle Scholar
  23. Padia SA, Geisinger MA, Newman JS, Pierce G, Obuchowski NA, Sands MJ (2009). Effectiveness of coil embolization in angiographically detectable versus non-detectable sources of upper gastrointestinal hemorrhage. J Vasc Interv Radiol 20: 461-466PubMedCrossRefGoogle Scholar
  24. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW et al (2001). Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med 345: 1435-1443PubMedCrossRefGoogle Scholar
  25. Saito S Nishinaka T (2005). Chronic nonpulsatile blood flow is compatible with normal end-organ function: implications for LVAD development. J Artif Organs 8: 143-148PubMedCrossRefGoogle Scholar
  26. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV et al (2009). Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361: 2241-2251PubMedCrossRefGoogle Scholar
  27. Souto JC, Almasy L, Muniz-Diaz E, Soria JM, Borrell M et al (2000). Functional effects of the ABO locus polymorphism on plasma levels of von Willebrand factor, factor VIII, and activated partial thromboplastin time. Arterioscler Thromb Vasc Biol 20: 2024-2028PubMedCrossRefGoogle Scholar
  28. Steinlechner B, Dworschak M, Birkenberg B, Duris M, Zeidler P et al (2009). Platelet dysfunction in outpatients with left ventricular assist devices. Ann Thorac Surg 87: 131-137PubMedCrossRefGoogle Scholar
  29. Stern DR, Kazam J, Edwards P, Maybaum S, Bello RA et al(2010) Increased incidence of gastrointestinal bleeding following implantation of the HeartMate II LVAD. J Card Surg 25(3): 352-356PubMedCrossRefGoogle Scholar
  30. Sucker C, Feindt P, Scharf RE (2003). Aortic stenosis, von Willebrand factor, and bleeding. N Engl J Med 349: 1773-1774; author reply 1773-1774PubMedCrossRefGoogle Scholar
  31. Uriel N, Pak SW, Jorde UP, Jude B, Susen S et al (2010) Acquired von Willebrand syndrome after continuous-flow mechanical device support contributes to a high prevalence of bleeding during long-term support and at the time of transplantation. J Am Coll Cardiol 56(15):1207-1213 Epub 2010 Jul 2CrossRefGoogle Scholar
  32. Vincentelli A, Susen S, Le Tourneau T, Six I, Fabre O et al (2003). Acquired von Willebrand syndrome in aortic stenosis. N Engl J Med 349: 343-349PubMedCrossRefGoogle Scholar
  33. Weldon DT, Burke SJ, Sun S, Mimura H Golzarian J (2008). Interventional management of lower gastrointestinal bleeding. Eur Radiol 18: 857-867PubMedCrossRefGoogle Scholar
  34. Whitlock R, Crowther Mang HJ (2005). Bleeding in cardiac surgery: its prevention and treatment-an evidence-based review. Crit Care Clin 21: 589-610PubMedCrossRefGoogle Scholar
  35. Williams RC, Jr. (2004). Aortic stenosis and unexplained gastrointestinal bleeding. Arch Intern Med 164: 679; author reply 679-680PubMedCrossRefGoogle Scholar
  36. Yoshida K, Tobe S, Kawata M (2006). Acquired von Willebrand disease type IIA in patients with aortic valve stenosis. Ann Thorac Surg 81: 1114-1116PubMedCrossRefGoogle Scholar

Literatur zu 9.4

  1. Ankersmit HJ et al (1999) Activation induced T-cell death and immune dysfunction after implantation of left ventricular assist device. Lancet 354: 550-555PubMedCrossRefGoogle Scholar
  2. Brun-Buisson C et al (2003) The costs of septic syndromes in the intensive care unit and influence of hospital acquired sepsis. Intensive Care Med 29: 1464-1471PubMedCrossRefGoogle Scholar
  3. Burke JP (2003) Infection control - A problem for patient safety. New Engl J Med 348: 651-656PubMedCrossRefGoogle Scholar
  4. Califano S et al (2012) Left ventricular assist device related infections. Infect Dis Clin North Am 26: 77-87PubMedCrossRefGoogle Scholar
  5. Deng MC et al (1999) Left ventricular assist system support is associated with persistent inflammation and temporary immunosuppression. Thorac Cardiovasc Surg 47 (Suppl. 2): 326-331PubMedCrossRefGoogle Scholar
  6. Gordon SM et al (2001) Nosocomial bloodstream infections in patients with implantable left ventricular assist devices. Ann Thorac Surg 72: 725-730PubMedCrossRefGoogle Scholar
  7. Harbath S et al (2006) Epidemiologie und Ätiologie schwerer nosokomialer Infektionen. In: Van Aken et al.: Intensivmedizin, Thieme-Verlag, 2. Auflage, Stuttgart, New YorkGoogle Scholar
  8. Rello J et al (2003) Pneumonia in the intensive care unit. Critical Care Med 31: 2544-2551CrossRefGoogle Scholar
  9. Sandiumenge A et al (2003) Therapy of ventilator associated pneumonia. A patient based approach based on the ten rules of the «Tarragona-Strategy". Intensive Care Med 29: 876-883PubMedGoogle Scholar
  10. Tjan TDT et al (2000) Severe wound complications after left ventricular assist device. Ann Thorac Surg 70: 538-541PubMedCrossRefGoogle Scholar
  11. Vincent JL (2003) Nosocomial infections in adult intensive care units. Lancet 361: 2068-2077PubMedCrossRefGoogle Scholar

Literatur zu 9.5

  1. Chandrashekhar Y et al. Mitral stenosis (2009) Lancet 374: 1271-1283PubMedCrossRefGoogle Scholar
  2. European Resuscitation Council (2005) Guidelines for Resuscitation 2005. Resuscitation 67 (Suppl. 1): 1-189CrossRefGoogle Scholar
  3. European Resuscitation Council (2010) European Resuscitation Guidelines for Resuscitation. Resuscitation 81: 1219-1452CrossRefGoogle Scholar
  4. Litmathe J et al (2006) Predictive risk factors in double-valve replacement (AVR and MVR) compared to isolated aortic valve replacement. Thorac Cardiovasc Surg 54: 459-463PubMedCrossRefGoogle Scholar
  5. Niebauer MJ et al (2001) Management of atrial flutter. Cardiol Rev 9: 253-258PubMedCrossRefGoogle Scholar
  6. Passannante AN (2011) Prevention of atrial fibrillation after cardiac surgery. Curr Opin Anaesthesiol 24: 58-63PubMedCrossRefGoogle Scholar
  7. Riley AB (2001) Atrial fibrillation: An epidemic study in the elderly. Expert Rev Cardiovasc Ther 9: 1081-1090CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • U. Boeken
    • 1
  • A. Assmann
    • 1
  • F. Born
    • 2
  • C. Schmid
    • 3
  1. 1.Klinik für Kardiovaskuläre ChirurgieUniversitätsklinikum DüsseldorfDüsseldorf
  2. 2.Herzchirurgische Klinik und PoliklinikKlinikum der Universität München – GroßhadernMünchen
  3. 3.Klinik für Herz-, Thorax- und herznahe GefäßchirurgieUniversitätsklinikum RegensburgRegensburg

Personalised recommendations