• U. Boeken
  • A. Assmann
  • F. Born
  • C. Schmid


Bei Patienten mit einem VAD/TAH erfolgt eine Gerinnungsaktivierung v.a. an den nicht endothelen Oberflächen der Systeme. Zudem finden sich am Ventrikel akinetische Zonen mit einer Stase des Blutstromes, besonders im Bereich der Inflow-Kanüle, die eine Entstehung von Thromben begünstigen.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Literatur zu 8.1

  1. Boyle AJ, Russel SD, Teuteberg JJ et al (2009) Low thromboembolism and pump thrombosis with the HeratMate II left ventricular assist device: analysis of outpatient anticoagulation. J Heart Lung Transplant 28: 881-887PubMedCrossRefGoogle Scholar
  2. Casanato A, Sponga S, Pontara E et al (2011). Von Willebrand factor abnormalities in aortic valve stenosis: pathophysiology and impact on bleeding. Thromb and Haemost106: 58-65CrossRefGoogle Scholar
  3. Chan YC, Valenti D, Mansfield AO, Stansby G. Warfarin (2000) Induced skin necrosis. Br J Surg 87: 266-272PubMedCrossRefGoogle Scholar
  4. Demirozu ZT, Radovancevic R, Hochman LF et al (2011) Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant 30(8): 849-853PubMedGoogle Scholar
  5. Feher G, Feher A, Pusch G et al (2010) Clinical importance of aspirin and clopidrogel resistance World of Cardiol 26: 171-186Google Scholar
  6. Gaglia MA, Manoukian SV, Waksman R (2010) Novel antiplatelet therapy. Am Heart J 160: 595-604PubMedCrossRefGoogle Scholar
  7. Geisen U, Heilmann C, Beyersdorf F et al (2008) Non-surgical bleeding in patients with ventricular asist device could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg 33: 679-684PubMedCrossRefGoogle Scholar
  8. Houer R, Mazoyer E, Kirsch M et al (2003) J Resistance to aspirin after external ventricular assist device implantation. Thorac Cardiovasc Surg 126: 1636-1637CrossRefGoogle Scholar
  9. John R, Kamdar F, Liao K et al (2008) Low thromboembolic risk for patients with the HeartMate II left ventricular assist device. J Thorac Cardiovasc Surg 136: 1318-1323PubMedCrossRefGoogle Scholar
  10. Kloviate J, Gustafson F, Mortensen SA, Sander K, Nielsen LB (2009) Severely impaired von Willebrand factor dependent platelet aggregation in patients with a continuous flow left ventricular assist device. J Am Coll Cardiol 53: 2162-2167CrossRefGoogle Scholar
  11. Koster A, Huebler S, Potapov E et al (2007) Impact of heparin-induced thrombocytopenia on outcome in patients with ventricular assist device support. Single-institution experience in 358 consecutive patients. Ann Thorac Surg 83: 72-76PubMedCrossRefGoogle Scholar
  12. Krasopoulos G, Brister SJ, Beattle WS, Elliot RF (2008) Aspirin resistance and risk of cardiovascular morbidity: systematic review and meta-analysis. BJM 336: 195-198CrossRefGoogle Scholar
  13. Mavrakanas T, Bounameaux H (2011). The potential role of new oral anticoagulants in the prevention and treatment of thromboembolism. Pharmacol Ther 130: 46-58PubMedCrossRefGoogle Scholar
  14. Meyer AL, Malhesa D, Bara C. et al (2010) Auqired von Willebrand syndrome in patients with an axial flow ventricular assist device. Circ Heart Fail 3: 675-681PubMedCrossRefGoogle Scholar
  15. Natorska J, Bykoswska K, Hlatwaty M, Marek G, Sadowsky J, Undas A (2011) Increased thrombin generation and platelet activation are associated with deficiency in high molecular weight multimers of von Willebrand factor in patients with moderate to severe aortic stenosis. Heart 97(24):2023-2028, Epub 2011 May 10PubMedCrossRefGoogle Scholar
  16. O’Brien PJ, Mureebe L (2012) Direct thrombin inhibitors. J Cardiovasc Pharmacol Ther 17(1):5-11, Epub 2011 Feb 18PubMedCrossRefGoogle Scholar
  17. Otis SA, Zehnder JL (2010) Heparin-induced thrombocytopenia: current status and diagnostic challenges. Am J Hematol 85: 700-706PubMedCrossRefGoogle Scholar
  18. Panzer S, Eslam RB, Schneller A et al (2010). Loss of high molecular weight von Wilebrand factor multimers mainly affects platelet aggregation in patients with aortic stenosis. Throb Haemost 103: 408-414CrossRefGoogle Scholar
  19. Pouplard C, Gueret P, Fouassier M et al (2007) Prospective evaluation of the »4Ts« score and particle gel immunoassay specific to heparin/PF4 for the diagnosis of heparin-induced thrombocytopenia. J Thromb Haemost 5: 1373-1379PubMedCrossRefGoogle Scholar
  20. Rechner AR (2011) Platelet function testing in clinical diagnostics. Hämostaseologie 31(2): 79-87. Epub 2010 Dec 9PubMedCrossRefGoogle Scholar
  21. Samuels LE, Kohout J, Casanova-Ghosh E et al (2008) Argatroban as a primary or secondary anticoagulant in patients implanted with a ventricular assist device. Ann Thorac Surg 85: 1651-1655PubMedCrossRefGoogle Scholar
  22. Savas BS, Asgun F, Oz K, Kuraly E, Tatar H (2007) Warfarin-induced skin necrosis after open heart surgery due to protein S and C deficiency. Heart Vessels 22: 64-66CrossRefGoogle Scholar
  23. Saxena R, Sharma P (2009) Gastrointestinal angiodysplasia and acquired von Willebrand Syndrome: a review of an enigmatic association. Journal of Coagulation Dysorders 1(1): 11-16Google Scholar
  24. Schenk S, El-Banayosy A, Prohaska W. et al (2006) Heparin-induced thrombocytopenia in patients receiving mechanical circulatory support. J Thorac Cardiovas Surg 131: 1373-1381CrossRefGoogle Scholar
  25. Slaughter MS, Yoshifumi N, John RJ et al (2010) Post-operative heparin may not be required for transitioning patients with a HeartMate II left ventricular assist system to long term warfarin therapy. J Heart Lung Transplant 29: 616-624PubMedCrossRefGoogle Scholar
  26. Snoep JD, Hovens MMC, Eikenboom JCJ et al (2007) Clopidrogel responsiveness in patients undergoing percutaneous coronary intervention with stenting: a systematic review and meta-analysis. Am Heart J 154: 221-231PubMedCrossRefGoogle Scholar
  27. Spiess BD (2008) Treating heparin resistance with antithrombin or fresh frozen plasma. Ann Thorac Surg 85: 2153-2160PubMedCrossRefGoogle Scholar
  28. Steinlechner B, Dworschak M, Birkenburg B et al (2009) Platelet dysfunction in outpatients with left ventricular assist devices. Ann Thorac Surg87: 131-138PubMedCrossRefGoogle Scholar
  29. Uriel N, Pak SW, Jorde U (2010) Acquired von Willebrand syndrome after continuous flow mechanical support contributes to a high prevalece of bleeding during long-term support and at time of transplantation. J Am Coll Cardiol 56: 1207-1213PubMedCrossRefGoogle Scholar
  30. Warkentin TE, Greinacher A, Koster A, Lincoff AM (2008) American College of Chest Physicians. Treatment and prevention of heparin-induced thrombocytopenia: American College of Chest Physicians evidence based clinical practice guidelines (8th edition) Chest 133 (6 Suppl.): 340S-380S.PubMedCrossRefGoogle Scholar

Literatur zu 8.2

  1. Affeld K, Grosshauser J, Reiter K, Grosse-Siestrup C, Kertzscher U (2011) How can we achieve infection-resistant percutaneous energy transfer? Artif Organs 35(8):800-806PubMedCrossRefGoogle Scholar
  2. Chinn R, Dembitsky W, Eaton L, Chillcott S, Stahovich M et al (2005) Multicenter experience: prevention and management of left ventricular assist device infections. ASAIO J 51(4):461-470PubMedCrossRefGoogle Scholar
  3. Dembitsky WP, Tector AJ, Park S, Moskowitz AJ, Gelijns AC et al. (2004) Left ventricular assist device performance with long-term circulatory support: lessons from the REMATCH trial. Ann Thorac Surg 78(6):2123-9PubMedCrossRefGoogle Scholar
  4. von Eiff C, Becker K, Machka K, Stammer H, Peters G (2001) Nasal carriage as a source of Staphylococcus aureus bacteremia. Study Group. N Engl J Med 344(1):11-16CrossRefGoogle Scholar
  5. Habib G, Hoen B, Tornos P, Thuny F, Prendergast B et al (2009) ESC Committee for Practice Guidelines. Guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009): the Task Force on the Prevention, Diagnosis, and Treatment of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and the International Society of Chemotherapy (ISC) for Infection and Cancer. Eur Heart J 30(19):2369-2413PubMedCrossRefGoogle Scholar
  6. Hannan MM, Husain S, Mattner F, Danziger-Isakov L, Drew RJ et al (2011) International Society for Heart and Lung Transplantation. Working formulation for the standardization of definitions of infections in patients using ventricular assist devices. J Heart Lung Transplant 30(4):375-384CrossRefGoogle Scholar
  7. Lador A, Nasir H, Mansur N, Sharoni E, Biderman P et al (2012) Antibiotic prophylaxis in cardiac surgery: systematic review and meta-analysis. J Antimicrob Chemother 2011 Nov 13. [Epub ahead of print], 67(3): 541-550PubMedCrossRefGoogle Scholar

Literatur zu 8.3

  1. Ambardekar AV, Buttrick PM (2011) Reverse remodeling with left ventricular assist devices:A review of clinical, cellular and molecular effects. Circ Heart Fail4:224-33PubMedCrossRefGoogle Scholar
  2. Baba HA, Wohlschlaeger J ( 2008) Morphological and molecular changes in the myocardium after left ventricular mechanical support. Curr Cardiol Rev4:157-69PubMedCrossRefGoogle Scholar
  3. Birks EJ, Tansley PD, Hardy J et al (2006) Left ventricular assist device and drug therapy for the reversal of heart failure. N Engl J Med355:1873-84PubMedCrossRefGoogle Scholar
  4. Birks E, George RS, Hedger M. et al (2011) Reversal of severe heart failure with a continuous-flow left ventricular assist device and pharmacological therapy. Circulation 118:381-90CrossRefGoogle Scholar
  5. Birks EJ, Miller LW (2012) Myocardial recovery with use of ventricular assist devices. In: Kormos RL and Miller LW (eds.) Mechanical Circulatory Support. A Companion to Braunwald’s Heart Disease. Elsevier, Philadelphia , p258-71Google Scholar
  6. Bruggink AH, van Oostehout MF, de Jonge N et al (2006) Reverse remodeling of the myocardial extacellular matrix after prolonged left ventricular device support follows a biphasic pattern. J Heart lung transplant 25:1091-98PubMedCrossRefGoogle Scholar
  7. Dandel M, Weng Y, Sinawski H, Potapov E, Lehmkuhl HB, Hetzer R (2005) Long-term results in patients with idiopathic dilated cardiomyopathy after weaning from left ventricular assist devices. Circulation 112(suppl.):I-37-45.CrossRefGoogle Scholar
  8. Dandel M, Weng Y, Siniawski H, Potapov E, Drews T et al (2008) Prediction of cardiac stability after weaning from ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation 118[suppl 1]:S94-105CrossRefGoogle Scholar
  9. Dandel M, Weng Y, Siniawski H. et al (2011) Heart failure reversal by ventricular unloading in patients with chronic cardiomyopathy: criteria for weaning from ventricular assist devices. Eur Heart J;32:1148-60PubMedCrossRefGoogle Scholar
  10. Dandel M, Potapov E,-Krabatsch T, Weng Y,-Knosalla C,-Hetzer R (2012) Myokarderholung unter mechanischer Ventrikelentlastung und Entwöhnung vom ventrikulären Unterstützungssystem. Z Herz- Thorax- Gefäßchir DOI 10.1007/s00398-012-0939-1Google Scholar
  11. Ferrar DJ, Holmann WR, McBride LR, Kormos RL, Icenogle TB et al (2002) Long-term follow up of Thoratec ventricular assist device bridge-to-recovery patients successfully removed from support after recovery of ventricular function. J Heart Lung Transplant 21(5)516-521CrossRefGoogle Scholar
  12. George I, Xydas S, Manicini DM. et al (2006) Effect of clenbuterol on cardiac and skeletal muscle function during ventricular assist device support. J Heart Lung Transplant 25:1084-90.PubMedCrossRefGoogle Scholar
  13. Hall JL, Fermin DR, Birks EJ et al (2011) Clinical, molecular, and genomic changes in response to left ventricular assist devices. J Am Coll Cardiol 2011 57(6):641-52CrossRefGoogle Scholar
  14. Hetzer R, Müller J, Weng Y, et al (1999) Cardiac recovery in dilated cardiomyopathy by unloading with a left ventricular assist device. Ann Thorac Surg 68:742-49PubMedCrossRefGoogle Scholar
  15. Latif N, Yacoub MH, George R. et al (2007) Changes in sarcomeric and non-sarcomeric cytoskeletal proteins and focal adhesion molecules during clinical myocardial recovery after left ventricular assist device support. J Heart Lung transplant 26:230-235PubMedCrossRefGoogle Scholar
  16. Müller J, Wallukat G, Weng Y et al (1997) Weaning from mechanical cardiac support in patients with dilated cardiomyopathy. Circulation 96:542-49.PubMedCrossRefGoogle Scholar
  17. Oriyanhan W, Tsuneyoshi H, Nishina T. et al (2007) Determination of optimal duration of mechanical unloading for failing hearts to achieve bridge to recovery in a rat heterotopic heart transplantation model. J Heart Transplant 26:16-23CrossRefGoogle Scholar

Literatur zu 8.4

  1. Allen JG, Weiss ES, Schaffer JM et al (2010) Quality of life and functional status in patients surviving 12 months after left ventricular assist device implantation J Heart Lung Transpl 29:278-285CrossRefGoogle Scholar
  2. Andrus S, Dubois J, Jansen C et al (2003) Teaching documentation tool: building a successful discharge. Crit Care Nurse 23:39-48PubMedGoogle Scholar
  3. Bedi M, Kormos R, Winowich S et al (2006) Ventricular arrhythmias during left ventricular assist device support. Am J Cardiol 99:1151-1153CrossRefGoogle Scholar
  4. Brewer RJ, Lanfear DE, Sai-Sudhakar CB et al (2012) Extremes of body mass index do not impact mid-term survival after continuous-flow left ventricular assist device implantation. J Heart Lung Transpl 31:167-172CrossRefGoogle Scholar
  5. Butler J, Howser R, Portner PM et al (2005) Body mass index and outcomes after left ventricular assist device placement. Ann Thorac Surg 79:66-73PubMedCrossRefGoogle Scholar
  6. Cavanaugh JL, Miyamoto SD, da Cruz E et al (2010) Predicting recovery: Successful explant of a ventricular assist device in a child with dilated cardiomyopathy. J Heart Lung Transpl 29:105-108CrossRefGoogle Scholar
  7. Choong CK, Pasque MK, Shelton K et al (2005) The beneficial role of left ventricular assist device destination therapy in the reversal of contraindications to cardiac transplantation. J Thorac Cardiovasc Surg 130:879-880PubMedCrossRefGoogle Scholar
  8. Crow S, John R, Boyle A et al (2009) Gastrointestinal bleeding rates in recipients of nonpulsatile and pulsatile left ventricular assist devices J Thorac Cardiovasc Surg 137:208-215PubMedCrossRefGoogle Scholar
  9. Dandel M, Wenig Y, Siniawski H et al (2008) Prediction of cardiac stability after weaning from left ventricular assist devices in patients with idiopathic dilated cardiomyopathy. Circulation 118 Suppl 14:S94-105CrossRefGoogle Scholar
  10. Dang NC, Topkara VK, Kim BT et al (2005) Nutritional status in patients on left ventricular assist device support. J Thor Cardiovasc Surg 130(5):e3-e4CrossRefGoogle Scholar
  11. de Jonge N, Kirkels H, Lahpor JR et al (2001) Exercise performance in patients with end-stage heart failure after implantation of a left ventricular assist device and after heart transplantation. JACC 37(7):1794-1799PubMedCrossRefGoogle Scholar
  12. El-Banayosy A, Fey O, Sarnowski P et al (2001) Midterm follow-up of patients discharged from hospital under left ventricular assistance. J Heart Lung Transpl 20:53-58CrossRefGoogle Scholar
  13. Elhenawy AM, Algarni KD, Rodger M et al (2011) Mechanical circulatory support as a bridge to transplant candidacy. J Card Surg 26:542-547PubMedCrossRefGoogle Scholar
  14. Estep JD, Stainback RF, Little SH et al (2010) The role of echocardiography and other imaging modalities in patients with left ventricular assist devices. JACC: Cardiovasc Imaging 3:1049-1064CrossRefGoogle Scholar
  15. Garatti A, Bruschi G, Colombo T et al (2009) Noncardiac surgical procedures in patient supported with long-term implantable left ventricular assist device. Am J Surg 197:710-714PubMedCrossRefGoogle Scholar
  16. George RS, Yacoub MH, Tasca G et al (2007) Hemodynamic and echocardiographic responses to acute interruption of left ventricular assist device support: relevance to assessment of myocardial recovery. J Heart Lung Transpl 26:967-973CrossRefGoogle Scholar
  17. Gordon RJ, Quagliarello B, Lowy FD (2006) Ventricular assist device-related infections. Lancet Infect Dis 6:426-437PubMedCrossRefGoogle Scholar
  18. Grady KL, Meyer P, Mattea A et al (2001) Improvement in quality of life outcomes 2 weeks after left ventricular assist device implantation. J Heart Lung Transpl 20:657-669CrossRefGoogle Scholar
  19. Grady KL, Meyer PM, Dressler D et al (2004) Longitudinal change in quality of life and impact on survival after left ventricular assist device implantation. Ann Thorac Surg 77:1321-1327PubMedCrossRefGoogle Scholar
  20. Holman WL, Rayburn BK, McGiffin DC et al (2003) Infection in ventricular assist devices: Prevention and treatment. Ann Thorac Surg 75:S48-57CrossRefGoogle Scholar
  21. Hozayen SM, Soliman AM, Eckman PM (2012) Comparison of two ventricular assist device dressing change protocols. J Heart Lung Transpl 31:108-109CrossRefGoogle Scholar
  22. James KB, Rodkey S, McCarthy PM et al (1998) Exercise performance and chronotropic response in heart failure patients with implantable left ventricular assist devices. Am J Cardiol 81:1230-1232PubMedCrossRefGoogle Scholar
  23. Jaski BE, Branch KR, Adamson R et al (1993) Exercise hemodynamics during long-term implantation of a left ventricular assist device in patients awaiting heart transplantation. J Am Coll Cardiol 22:1574-1580PubMedCrossRefGoogle Scholar
  24. John R, Lietz K, Schuster M et al (2003) Immunologic sensitization in recipients of left ventricular assist devices. J Thorac Cardiovasc Surg 125:578-591PubMedCrossRefGoogle Scholar
  25. Kamiya K, Mezzani A, Masuda T et al (2012) Effects of electrical muscle stimulation in a left ventricular assist device patient. Int J Cardiol Februar 2012 in press, online verfügbar: http://dx.doi. org/10.1016/j.ijcard.2012.01.084Google Scholar
  26. Khan T, Delgado RM, Radovancevic B et al (2003) Dobutamine stress echocardiography predicts myocardial improvement in patients supported by left ventricular assist devices (LVADs): hemodynamic and histologic evidence of improvement before LVAD explantation. J Heart Lung Transpl 22:137-146CrossRefGoogle Scholar
  27. Kiernan MS, Pham DT, DeNofrio D et al (2011) Management of HeartWare left ventricular assist device thrombosis using intracavitary thrombolytics. J Thorac Cardiovasc Surg 142:712-714PubMedCrossRefGoogle Scholar
  28. Kohli HS, Canada J, Arena R et al (2011) Exercise blood pressure response during assisted circulatory support: Comparison of the total artificial heart with a left ventricular assist device during rehabilitation. J Heart Lung Transpl 30:1207-1213CrossRefGoogle Scholar
  29. Kushnir VM, Sharma S, Ewald GA et al (2012) Evaluation of GI bleeding after implantation of left ventricular assist device. Gastrointest Endoscop 75:973-979CrossRefGoogle Scholar
  30. Lam KM, Ennis S, O’Driscoll G et al (2009) Observations from non-invasive measures of right heart hemodynamics in left ventricular assist device patients. J Am Soc Echocardiogr 22:1055-1062PubMedCrossRefGoogle Scholar
  31. Maybaum S, Kamalakannan G, Murthy S (2008) Cardiac recovery during mechanical assist device support. Semin Thorac Cardiovasc Surg 20:234-246PubMedCrossRefGoogle Scholar
  32. Maybaum S, Mancini D, Xydas S et al (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115:2497-2505PubMedCrossRefGoogle Scholar
  33. Morales DL, Catanese KA, Helman DN et al (2000) Six-year experience of caring for fourty-four patients with a left ventricular assist device at home: safe, economical, necessary. J Thorac Cardiovasc Surg 119:251-259PubMedCrossRefGoogle Scholar
  34. Morgan JA, Paone G, Nemeh HW et al (2012) Non-cardiac surgery in patients on long-term left ventricular assist device support. J Heart Lung Transpl 31:757-763CrossRefGoogle Scholar
  35. Pamboukian SV, Tallaj JA, Brown RN et al (2011) Improvement in 2-year survival for ventricular assist device patients after implementation of an intensive surveillance protocol. J Heart Lung Transpl 30:879-887CrossRefGoogle Scholar
  36. Petrucci RJ, Rogers JG, Blue L et al (2012) Neurocognitoive function in destination therapy patients receiving continuous-flow vs pulsatile-flow left ventricular assist device support. J Heart Lung Transpl 31:27-36CrossRefGoogle Scholar
  37. Radovancevic B, Vrtovec B, de Kort E et al (2007) End-organ function in patients on long-term circulatory support with continuous- or pulsatile-flow assist devices. J Heart Lung Transpl 26: 815-818CrossRefGoogle Scholar
  38. Richenbacher WE, Seemuth SC (2001) Hospital discharge for the ventricular assist device patient: historical perspective and description of a successful program. ASAIO J 47:590-595PubMedCrossRefGoogle Scholar
  39. Samuels LE, Holmes Ec, Petrucci R. (2004) Psychosocial and sexual concerns of patients with implantable left ventricular assist devices: a pilot study. J Thorac Cardiovasc Surg 127:1432-1435PubMedCrossRefGoogle Scholar
  40. Sandner SE, Zimpfer D, Zrunek P et al (2009) Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg 87:1072-1078PubMedCrossRefGoogle Scholar
  41. Stewart GC, Brooks K, Prathibu PP et al (2009) Thresholds of physical activity and life expectancy for patients considering destination ventricular assist devices. J Heart Lung Transpl 28:863-869CrossRefGoogle Scholar
  42. Tjan TDT, Asfour B, Hammel D et al (2000) Wound complications after left ventricular assist device implantation. Ann Thorac Surg 70:538-541PubMedCrossRefGoogle Scholar
  43. Topilsky Y, Oh JK, Atchison FW et al (2011) Echocardiographic findings in stable outpatients with properly functioning HeartMate II left ventricular assist devices. J Am Soc Echocardiogr 24:157-169PubMedCrossRefGoogle Scholar
  44. Uchida N, Ishikawa M, Watanabe T et al (1987) Hemodynamic adaptation to exercise after total artificial heart (TAH) implantation. Trans Am Soc Artif Intern Organs 33:240-244Google Scholar
  45. Wadia Y, Etheridge W, Smart F et al (2005) Pathophysiology of hepatic dysfunction and intrahepatic cholestasis in heart failure and after left ventricular assist device support. J Heart Lung Transpl 24: 361-370CrossRefGoogle Scholar
  46. Wilson SR, Givertz MM, Stewart GC et al (2009) Ventricular assist devices - The challenges of outpatient management. JACC 54:1647-1659PubMedCrossRefGoogle Scholar
  47. Zimpfer D, Zrunek P, Roethy W et al (2007) Left ventricular assist devices decrease fixed pulmonary hypertension in cardiac transplant candidates. J Thorac Cardiovasc Surg 133:689-695PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • U. Boeken
    • 1
  • A. Assmann
    • 1
  • F. Born
    • 2
  • C. Schmid
    • 3
  1. 1.Klinik für Kardiovaskuläre ChirurgieUniversitätsklinikum DüsseldorfDüsseldorf
  2. 2.Herzchirurgische Klinik und PoliklinikKlinikum der Universität München – GroßhadernMünchen
  3. 3.Klinik für Herz-, Thorax- und herznahe GefäßchirurgieUniversitätsklinikum RegensburgRegensburg

Personalised recommendations