Miscellaneous Applications Combining Zeta with Other Regularization Procedures

Part of the Lecture Notes in Physics book series (LNP, volume 855)

Abstract

In this chapter the following applications of the method of zeta-function regularization are described. Firstly, some aspects of the comparison that was established by Fujikawa between the generalized Pauli–Villars regularization method and of the covariant regularization of composite current operators are investigated. Secondly, a calculation of the Casimir energy for the transverse oscillations of a piecewise uniform closed string is performed in detail. The string consists of two parts, each having in general different tension and mass density, but adjusted in such a way that the velocity of sound always equals the velocity of light. This model was introduced by I. Brevik and H.B. Nielsen. For the calculation, an interesting modification of the zeta function method as described up to now needs be performed, in the sense that it must be combined with some basic theorems of complex analysis (as the Cauchy or argument theorems). Also, a comparison with the results obtained by means of the introduction of a cut-off will be established which provides additional physical insight to the zeta function procedure. Hadamard regularization is also discussed, as a very useful auxiliary tool to the zeta method, in dealing with additional infinities and physical cut-offs. This aspect of comparing zeta-function’s analytic continuation with other regularization procedures is the main point in common in the examples studied here.

Keywords

Zeta Function Casimir Force Casimir Energy Dispersion Function Transverse Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 10.
    E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994) MATHCrossRefGoogle Scholar
  2. 11.
    E. Elizalde, Ten Physical Applications of Spectral Zeta Functions (Springer, Berlin, 1995) MATHGoogle Scholar
  3. 13.
    K. Kirsten, Spectral Functions in Mathematics and Physics (Chapman & Hall, London, 2001) CrossRefGoogle Scholar
  4. 14.
    A.A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, S. Zerbini, Analytic Aspects of Quantum Fields (World Scientific, Singapore, 2003) CrossRefGoogle Scholar
  5. 36.
    I. Brevik, H.B. Nielsen, Phys. Rev. D 41, 1185 (1990) MathSciNetADSMATHCrossRefGoogle Scholar
  6. 37.
    X. Li, X. Shi, J. Zhang, Phys. Rev. D 44, 560 (1991) ADSCrossRefGoogle Scholar
  7. 48.
    E. Elizalde, A. Romeo, Phys. Rev. D 40, 436 (1989) MathSciNetADSCrossRefGoogle Scholar
  8. 51.
    E. Elizalde, J. Math. Phys. 31, 170 (1990) MathSciNetADSMATHCrossRefGoogle Scholar
  9. 55.
    S.A. Frolov, A.A. Slavnov, Phys. Lett. B 309, 344 (1993) MathSciNetADSCrossRefGoogle Scholar
  10. 56.
    M. Bordag, E. Elizalde, K. Kirsten, J. Math. Phys. 37, 895 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  11. 64.
    M. Bordag, E. Elizalde, B. Geyer, K. Kirsten, Commun. Math. Phys. 179, 215 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  12. 109.
    E. Elizalde, J. Phys. A 22, 931 (1989) MathSciNetADSMATHCrossRefGoogle Scholar
  13. 131.
    Yu.S. Barash, V.L. Ginzburg, Electromagnetic fluctuations and molecular forces in condensed matter, in The Dielectric Function of Condensed Systems, ed. by L.V. Keldysh et al. (Elsevier, Amsterdam, 1989), pp. 389–457 Google Scholar
  14. 188.
    E. Elizalde, Phys. Lett. B 342, 277 (1995) ADSCrossRefGoogle Scholar
  15. 189.
    R. Narayanan, H. Neuberger, Phys. Lett. B 302, 62 (1993) ADSCrossRefGoogle Scholar
  16. 190.
    S. Aoki, Y. Kikukawa, Mod. Phys. Lett. A 8, 3517 (1993) MathSciNetADSMATHCrossRefGoogle Scholar
  17. 191.
    K. Fujikawa, Nucl. Phys. B 428, 169 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  18. 192.
    K. Fujikawa, Phys. Rev. D 21, 2848 (1980); Erratum, Phys. Rev. D 22, 1499 (1980) MathSciNetADSCrossRefGoogle Scholar
  19. 193.
    K. Fujikawa, Phys. Rev. Lett. 42, 1195 (1979) ADSCrossRefGoogle Scholar
  20. 194.
    E. Elizalde, J. Phys. A 27, 3775 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  21. 195.
    I. Brevik, E. Elizalde, Phys. Rev. D 49, 5319 (1994) ADSCrossRefGoogle Scholar
  22. 196.
    I. Brevik, H.B. Nielsen, Phys. Rev. D 51, 1869 (1995) ADSCrossRefGoogle Scholar
  23. 197.
    T.D. Lee, Particle Physics and Introduction to Field Theory (Harwood Academic, New York, 1988), Chaps. 17 and 20. Media obeying the condition ϵμ=1 have been discussed also, for example, by I. Brevik, I. Clausen, Phys. Rev. D 39, 603 (1989) Google Scholar
  24. 198.
    N.G. van Kampen, B.R.A. Nijboer, K. Schram, Phys. Lett. A 26, 307 (1968) ADSCrossRefGoogle Scholar
  25. 199.
    P.M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 428 MATHGoogle Scholar
  26. 200.
    E.M. Lifshitz, L.P. Pitaevskii, Statistical Physics, Part 2 (Pergamon, Oxford, 1980) Google Scholar
  27. 201.
    E. Elizalde, J. Phys A 36, L567 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  28. 202.
    E. Wigner, Commun. Pure Appl. Math. 13, 1 (1960) MATHCrossRefGoogle Scholar
  29. 203.
    H.B.G. Casimir, Proc. K. Ned. Acad. Wet. 51, 635 (1948) Google Scholar
  30. 204.
    E. Elizalde, J. Phys. A 34, 3025 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  31. 205.
    E. Elizalde, J. Comput. Appl. Math. 118, 125 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  32. 206.
    E. Elizalde, Commun. Math. Phys. 198, 83 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  33. 207.
    E. Elizalde, J. Phys. A 30, 2735 (1997) MathSciNetADSMATHCrossRefGoogle Scholar
  34. 208.
    K. Kirsten, E. Elizalde, Phys. Lett. B 365, 72 (1995) MathSciNetADSGoogle Scholar
  35. 209.
    E. Elizalde, J. Phys. A 27, 3775 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  36. 210.
    E. Elizalde, J. Phys. A 27, L299 (1994) MathSciNetADSMATHCrossRefGoogle Scholar
  37. 211.
    E. Elizalde, J. Phys. A 22, 931 (1989) MathSciNetADSMATHCrossRefGoogle Scholar
  38. 212.
    E. Elizalde, A. Romeo, Phys. Rev. D 40, 436 (1989) MathSciNetADSCrossRefGoogle Scholar
  39. 213.
    D. Deutsch, P. Candelas, Phys. Rev. D 20, 3063 (1979) MathSciNetADSCrossRefGoogle Scholar
  40. 214.
    K. Symanzik, Nucl. Phys. B 190, 1 (1981) MathSciNetADSCrossRefGoogle Scholar
  41. 215.
    R.L. Jaffe, Unnatural acts: Unphysical consequences of imposing boundary conditions on quantum fields, CTP-MIT-3394, arXiv: hep-th/0307014v2
  42. 216.
    N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, H. Weigel, Phys. Lett. B 572, 196 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  43. 217.
    N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, H. Weigel, Nucl. Phys. B 645, 49 (2002) ADSMATHCrossRefGoogle Scholar
  44. 218.
    N. Graham, R.L. Jaffe, H. Weigel, Int. J. Mod. Phys. A 17, 846 (2002) ADSMATHCrossRefGoogle Scholar
  45. 219.
    V.M. Mostepanenko, N.N. Trunov, The Casimir Effect and Its Application (Clarendon Press, Oxford, 1997) Google Scholar
  46. 220.
    K.A. Milton, The Casimir Effect: Physical Manifestations of Zero-Point Energy (World Scientific, Singapore, 2001) MATHCrossRefGoogle Scholar
  47. 221.
    M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353, 1 (2001) MathSciNetADSMATHCrossRefGoogle Scholar
  48. 222.
    E. Elizalde, M. Bordag, K. Kirsten, J. Phys. A 31, 1743 (1998) ADSMATHCrossRefGoogle Scholar
  49. 223.
    E. Elizalde, L. Vanzo, S. Zerbini, Commun. Math. Phys. 194, 613 (1998) MathSciNetADSMATHCrossRefGoogle Scholar
  50. 224.
    M. Bordag, E. Elizalde, K. Kirsten, S. Leseduarte, Phys. Rev. D 56, 4896 (1997) MathSciNetADSCrossRefGoogle Scholar
  51. 225.
    M. Bordag, E. Elizalde, K. Kirsten, J. Math. Phys. 37, 895 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  52. 226.
    M. Bordag, E. Elizalde, B. Geyer, K. Kirsten, Commun. Math. Phys. 179, 215 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  53. 227.
    E. Elizalde, A.C. Tort, Phys. Rev. D 66, 045033 (2002) MathSciNetADSCrossRefGoogle Scholar
  54. 228.
    L. Blanchet, G. Faye, J. Math. Phys. 41, 7675 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  55. 229.
    V. Moretti, Commun. Math. Phys. 232, 189 (2003) MathSciNetADSMATHCrossRefGoogle Scholar
  56. 230.
    H. Sahlmann, R. Verch, Rev. Math. Phys. 13, 1203 (2001) MathSciNetMATHCrossRefGoogle Scholar
  57. 231.
    R. Brunetti, K. Fredenhagen, Commun. Math. Phys. 208, 623 (2000) MathSciNetADSMATHCrossRefGoogle Scholar
  58. 232.
    V. Moretti, J. Math. Phys. 40, 3843 (1999) MathSciNetADSMATHCrossRefGoogle Scholar
  59. 233.
    R. Brunetti, K. Fredenhagen, Commun. Math. Phys. 180, 633 (1996) MathSciNetADSMATHCrossRefGoogle Scholar
  60. 234.
    R. Verch, Hadamard vacua in curved spacetime and the principle of local definiteness, in XIth International Congress of Mathematical Physics, Paris, 1994 (International Press, Cambridge, 1995), p. 352 Google Scholar
  61. 235.
    P.L. Butzer, A. Kilbas, J.J. Trujillo, J. Math. Anal. Appl. 269, 387 (2002) MathSciNetMATHCrossRefGoogle Scholar
  62. 236.
    A.N. Guz, V.V. Zozulya, Int. J. Nonlinear Sci. Numer. Simul. 2, 173 (2001) MathSciNetMATHCrossRefGoogle Scholar
  63. 237.
    R. Estrada, R. Kanwal, Singular Integral Equations (Birkhäuser Boston, Boston, 2000) MATHCrossRefGoogle Scholar
  64. 238.
    G. Criscuolo, J. Comput. Appl. Math. 78, 255 (1997) MathSciNetMATHCrossRefGoogle Scholar
  65. 239.
    N. Mastronardi, D. Occorsio, J. Comput. Appl. Math. 70, 75 (1996) MathSciNetMATHCrossRefGoogle Scholar
  66. 240.
    J.D. Elliott, J. Comput. Appl. Math. 62, 267 (1995) MathSciNetMATHCrossRefGoogle Scholar
  67. 241.
    L. Schwartz, Théorie des distributions (Hermann, Paris, 1997) Google Scholar
  68. 242.
    Eur. Phys. J. H 35(3) (Springer, 2010) Google Scholar
  69. 243.
    R. Melrose, Problems of Class 18.155, MIT, Third Assignment, Fall Term (2001) Google Scholar
  70. 244.
    Mathematica, Version 5 (Wolfram Research, Inc., Champaign, 2003) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Space ScienceHigher Council for Scientific ResearchBellaterra (Barcelona)Spain

Personalised recommendations