Five Physical Applications of the Inhomogeneous Generalized Epstein–Hurwitz Zeta Functions

  • Emilio Elizalde
Part of the Lecture Notes in Physics book series (LNP, volume 855)


In this chapter some explicit applications to the regularization, by means of Hurwitz zeta-functions considered in previous chapters, of different problems which have appeared recently in the physical literature, are considered. This kind of zeta functions show up profusely in many applications of quantum physics where regularization techniques are needed; in particular, when one deals with a massive quantum field theory in a (totally or partially) compactified spacetime (spherical or toroidal compactification, for instance). Aside from the interest that a detailed mathematical study of these functions may have on its own (e.g., in number theory), what is actually needed for most physical applications is always the numerical value of these functions, and of their derivatives with respect to the main variable and some of the accompanying parameters, before proceeding with the analytical continuation of the functions and also with the treatment of the (possible) poles. This procedure has already been checked in several situations, where the result is usually given in terms of sums of Hurwitz zeta functions and, generically, under the form of asymptotic expansions. Actually, this situation has been described in some detail in Chap.  4 already. In the present one, five additional, completely different applications are dealt with. Namely, in the first section, the calculation of the Casimir energy corresponding to compact universes without boundary. In the second, the calculation of the sum over one-loop integrals which yields the cross section of a scattering process in a Kaluza–Klein model with spherical compactification. Another application is the study of the critical behavior of a field theory at non-zero temperature. As the fourth example of this chapter, the quantization of two-dimensional gravity by means of the Wheeler–De Witt equation is discussed. Finally, the last case considered is the use of the spectral zeta function for both scalar and vector fields on a spacetime with a noncommutative toroidal part.


Zeta Function Eisenstein Series Riemann Sphere Double Pole Casimir Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 35.
    A. Actor, Class. Quantum Gravity 5, 1415 (1988) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 42.
    S.K. Blau, M. Visser, A. Wipf, Nucl. Phys. B 310, 163 (1988) MathSciNetADSCrossRefGoogle Scholar
  3. 126.
    E. Elizalde, J. Math. Phys. 35, 3308 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 127.
    E. Elizalde, Yu. Kubyshin, J. Phys. A 27, 7533 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  5. 156.
    E. Cheng, M.W. Cole, W.F. Saam, J. Treiner, Phys. Rev. Lett. 67, 1007 (1991) ADSCrossRefGoogle Scholar
  6. 157.
    M. Krech, S. Dietrich, Phys. Rev. Lett. 66, 345 (1991) ADSCrossRefGoogle Scholar
  7. 158.
    M. Krech, S. Dietrich, Phys. Rev. Lett. 67, 1055 (1991) ADSCrossRefGoogle Scholar
  8. 159.
    M. Krech, S. Dietrich, Phys. Rev. A 46, 1886 (1992) ADSCrossRefGoogle Scholar
  9. 160.
    M. Krech, S. Dietrich, Phys. Rev. A 46, 1922 (1992) ADSCrossRefGoogle Scholar
  10. 161.
    F. De Martini, G. Jacobovitz, Phys. Rev. Lett. 60, 1711 (1988) ADSCrossRefGoogle Scholar
  11. 162.
    F. De Martini et al., Phys. Rev. A 43, 2480 (1991) ADSCrossRefGoogle Scholar
  12. 163.
    W.I. Weisberger, Commun. Math. Phys. 112, 633 (1987) MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 164.
    W.I. Weisberger, Nucl. Phys. B 284, 171 (1987) MathSciNetADSCrossRefGoogle Scholar
  14. 165.
    E. Aurell, P. Salomonson, Commun. Math. Phys. 165, 233 (1994) MathSciNetADSzbMATHCrossRefGoogle Scholar
  15. 166.
    C. Itzykson, J.-M. Luck, J. Phys. A 19, 211 (1986) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 167.
    J.S. Dowker, R. Banach, J. Phys. A 11, 2255 (1978) MathSciNetADSCrossRefGoogle Scholar
  17. 168.
    P. Candelas, S. Weinberg, Nucl. Phys. B 237, 397 (1984) MathSciNetADSCrossRefGoogle Scholar
  18. 169.
    G.W. Gibbons, J. Phys. A 11, 1341 (1978) MathSciNetADSCrossRefGoogle Scholar
  19. 170.
    E.J. Copeland, D.J. Toms, Nucl. Phys. B 255, 201 (1985) MathSciNetADSCrossRefGoogle Scholar
  20. 171.
    G.R. Shore, Ann. Phys. 128, 376 (1980) MathSciNetADSCrossRefGoogle Scholar
  21. 172.
    N.N. Bogoliubov, D.V. Shirkov, Introduction to the Theory of Quantized Fields (Wiley, New York, 1980) Google Scholar
  22. 173.
    I.L. Buchbinder, S.D. Odintsov, I.L. Shapiro, Effective Action in Quantum Gravity (IOP Publishing, Boston and Philadelphia, 1992) Google Scholar
  23. 174.
    T. Inagaki, T. Kouno, T. Muta, Int. J. Mod. Phys. A 10, 2241 (1995) ADSCrossRefGoogle Scholar
  24. 175.
    S. Carlip, Class. Quantum Gravity 11, 31 (1994) MathSciNetADSCrossRefGoogle Scholar
  25. 176.
    S. Lang, Elliptic Functions, Grad. Text in Mathematics, vol. 112 (Springer, New York, 1987), Chap. 20 zbMATHCrossRefGoogle Scholar
  26. 177.
    T. Kubota, Elementary Theory of Eisenstein Series (Kodansha, Tokyo, and Wiley, New York, 1973) zbMATHGoogle Scholar
  27. 178.
    A. Connes, M.R. Douglas, A. Schwarz, JHEP 9802, 003 (1998) MathSciNetADSCrossRefGoogle Scholar
  28. 179.
    M.R. Douglas, C. Hall, JHEP 9802, 008 (1998) ADSCrossRefGoogle Scholar
  29. 180.
    N. Seiberg, E. Witten, JHEP 9909, 032 (1999) MathSciNetADSCrossRefGoogle Scholar
  30. 181.
    Y.-K.E. Cheung, M. Krogh, Nucl. Phys. B 528, 185 (1998) MathSciNetADSzbMATHCrossRefGoogle Scholar
  31. 182.
    C.-S. Chu, P.-M. Ho, Nucl. Phys. B 550, 151 (1999) MathSciNetADSzbMATHCrossRefGoogle Scholar
  32. 183.
    V. Schomerus, JHEP 9906, 030 (1999) MathSciNetADSCrossRefGoogle Scholar
  33. 184.
    F. Ardalan, H. Arfaei, M.M. Sheikh-Jabbari, JHEP 9902, 016 (1999) MathSciNetADSCrossRefGoogle Scholar
  34. 185.
    A.A. Bytsenko, A.E. Goncalves, S. Zerbini, Mod. Phys. Lett. A 16, 1479 (2001) MathSciNetADSzbMATHCrossRefGoogle Scholar
  35. 186.
    P.B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah–Singer Index Theorem, Studies in Advanced Mathematics (CRC Press, Boca Raton, 1995) zbMATHGoogle Scholar
  36. 187.
    A.A. Bytsenko, E. Elizalde, S. Zerbini, Phys. Rev. D 64, 105024 (2001) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Space ScienceHigher Council for Scientific ResearchBellaterra (Barcelona)Spain

Personalised recommendations