Advertisement

Mathematical Formulas Involving the Different Zeta Functions

  • Emilio Elizalde
Part of the Lecture Notes in Physics book series (LNP, volume 855)

Abstract

In this chapter, a compendium of the formulas resulting from the zeta-regularization techniques, developed by the author and collaborators, is given. Although some of the original derivations are reproduced, the content of the chapter is mainly intended as an extensive table for practical use by the reader: the full derivations and arguments involved can be found in the accompanying bibliographical references. In particular, useful expressions are provided for the analytic continuation of Riemann, Hurwitz and Epstein zeta functions and generalizations of them, for their asymptotic expansions (including those for derivatives of Hurwitz’s, the zeta-function regularization theorem and its uses for multiple zeta-functions with arbitrary exponents and, in another section, the first immediate applications of the theorem. All this is followed by a very careful study of the analytic continuation of multiple series which terms are combinations involving arbitrary coefficients and exponents, a case that is very involved and has never before been treated properly in the mathematical literature. Of course this case always involves the elusive term that shows up in the correct application of the zeta-function regularization theorem, again an original result. Some mistakes which regretfully appeared some of in a few formulas of the original papers and previous versions have been corrected.

Keywords

Asymptotic Expansion Zeta Function Asymptotic Series Bernoulli Polynomial Regularization Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 10.
    E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994) zbMATHCrossRefGoogle Scholar
  2. 11.
    E. Elizalde, Ten Physical Applications of Spectral Zeta Functions (Springer, Berlin, 1995) zbMATHGoogle Scholar
  3. 13.
    K. Kirsten, Spectral Functions in Mathematics and Physics (Chapman & Hall, London, 2001) CrossRefGoogle Scholar
  4. 14.
    A.A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti, S. Zerbini, Analytic Aspects of Quantum Fields (World Scientific, Singapore, 2003) CrossRefGoogle Scholar
  5. 17.
    G.H. Hardy, Mess. Math. 49, 85 (1919) Google Scholar
  6. 23.
    J.S. Dowker, R. Critchley, Phys. Rev. D 13, 3224 (1976) MathSciNetADSCrossRefGoogle Scholar
  7. 24.
    S.W. Hawking, Commun. Math. Phys. 55, 133 (1977) MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. 39.
    L. Brink, H.B. Nielsen, Phys. Lett. B 45, 332 (1973) ADSCrossRefGoogle Scholar
  9. 40.
    A. Salam, J. Strathdee, Nucl. Phys. B 90, 203 (1975) MathSciNetADSCrossRefGoogle Scholar
  10. 41.
    L.S. Brown, G.J. MacLay, Phys. Rev. 184, 1272 (1969) ADSCrossRefGoogle Scholar
  11. 44.
    D.G.C. McKeon, T.N. Sherry, Phys. Rev. Lett. 59, 532 (1987) MathSciNetADSCrossRefGoogle Scholar
  12. 45.
    A. Rebhan, Phys. Rev. D 39, 3101 (1989) ADSCrossRefGoogle Scholar
  13. 47.
    D.G.C. McKeon, T.N. Sherry, Phys. Rev. D 35, 3854 (1987) MathSciNetADSCrossRefGoogle Scholar
  14. 48.
    E. Elizalde, A. Romeo, Phys. Rev. D 40, 436 (1989) MathSciNetADSCrossRefGoogle Scholar
  15. 51.
    E. Elizalde, J. Math. Phys. 31, 170 (1990) MathSciNetADSzbMATHCrossRefGoogle Scholar
  16. 53.
    A. Actor, J. Phys. A 24, 3741 (1991) MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 84.
    C.M. Bender, S.A. Orszag, Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill, New York, 1978), pp. 261–265 zbMATHGoogle Scholar
  18. 95.
    E. Elizalde, Math. Comput. 47, 347 (1986) MathSciNetzbMATHCrossRefGoogle Scholar
  19. 96.
    F. Steiner, Phys. Lett. B 188, 447 (1987) MathSciNetADSCrossRefGoogle Scholar
  20. 97.
    S. Rudaz, J. Math. Phys. 31, 2832 (1990) MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 98.
    E. Elizalde, J. Math. Phys. 34, 3222 (1993) MathSciNetADSzbMATHCrossRefGoogle Scholar
  22. 99.
    F.W.J. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974), pp. 71–72 and 80–84 Google Scholar
  23. 100.
    A. Erdélyi (ed.), Higher Transcendental Functions, vol. I (McGraw-Hill, New York, 1953), p. 27 Google Scholar
  24. 101.
    A. Actor, Nucl. Phys. B 265, 689 (1986) MathSciNetADSCrossRefGoogle Scholar
  25. 102.
    H.A. Weldon, Nucl. Phys. B 270, 79 (1986) MathSciNetADSCrossRefGoogle Scholar
  26. 103.
    A. Actor, J. Phys. A 20, 927 (1987) MathSciNetADSzbMATHCrossRefGoogle Scholar
  27. 104.
    A. Actor, J. Phys. A 20, 5351 (1987) MathSciNetADSzbMATHCrossRefGoogle Scholar
  28. 105.
    I.J. Zucker, J. Phys. A 7, 1568 (1974) MathSciNetADSCrossRefGoogle Scholar
  29. 106.
    I.J. Zucker, J. Phys. A 8, 1734 (1975) MathSciNetADSCrossRefGoogle Scholar
  30. 107.
    I.J. Zucker, M.M. Robertson, J. Phys. A 8, 874 (1975) MathSciNetADSCrossRefGoogle Scholar
  31. 108.
    A. Actor, Fortschr. Phys. 35, 793 (1987) MathSciNetCrossRefGoogle Scholar
  32. 109.
    E. Elizalde, J. Phys. A 22, 931 (1989) MathSciNetADSzbMATHCrossRefGoogle Scholar
  33. 110.
    E. Elizalde, A. Romeo, Int. J. Mod. Phys. A 5, 1653 (1990) MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Space ScienceHigher Council for Scientific ResearchBellaterra (Barcelona)Spain

Personalised recommendations