Advertisement

Introduction

  • Amit Finkler
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In the following section I present the scientific background relevant to this work. In Sect. 1.1.1 I review type-II superconductors, concentrating on their dynamical properties in the mixed state, with an emphasis given to vortices and vortex dynamics. In Sect. 1.1.2 a short explanation of how a superconducting quantum interference device (SQUID) works is given and finally in Sect.1.1.3 I describe the working principle of a tuning fork. Understanding the SQUID and the tuning fork is vital for the study of vortex dynamics.

Keywords

Scanning Probe Microscope Tuning Fork Vortex Lattice Flux Line Vortex Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abrikosov, A. A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174 (1957)Google Scholar
  2. 2.
    Deaver, B. S. and Fairbank, W. M.: Experimental evidence for quantized flux in superconducting cylinders. Phys. Rev. Lett. 7, 43 (1961)Google Scholar
  3. 3.
    Blatter, G., Feigelman, M. V., Geshkenbein, V. B., Larkin, A. I., and Vinokur, V. M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994)Google Scholar
  4. 4.
    Kwok, W. K., Fleshler, S., Welp, U., Vinokur, V. M., Downey, J., Crabtree, G. W., and Miller, M. M. Vortex lattice melting in untwinned and twinned single crystals of YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\). Phys. Rev. Lett. 69, 3370 (1992).Google Scholar
  5. 5.
    Charalambous, M., Chaussy, J., and Lejay, P. Evidence from resistivity measurements along the c axis for a transition within the vortex state for H \(\parallel \) ab in single-crystal YBa\(_2\)Cu\(_3\)O\(_7\). Phys. Rev. B 45, 5091 (1992).Google Scholar
  6. 6.
    Safar, H., Gammel, P. L., Huse, D. A., Bishop, D. J., Lee, W. C., Giapintzakis, J., and Ginsberg, D. M. Experimental evidence for a multicritical point in the magnetic phase diagram for the mixed state of clean untwinned YBa\(_2\)Cu\(_3\)O\(_7\). Phys. Rev. Lett. 70, 3800 (1993).Google Scholar
  7. 7.
    Zeldov, E., Majer, D., Konczykowski, M., Geshkenbein, V. B., Vinokur, V. M., and Shtrikman, H. Thermodynamic observation of first-order vortex-lattice melting transition in Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_8\). Nature 375, 373 (1995).Google Scholar
  8. 8.
    Giamarchi, T. and Le Doussal, P. Elastic theory of pinned flux lattices. Phys. Rev. Lett. 72, 1530 (1994).Google Scholar
  9. 9.
    Giamarchi, T. and Le Doussal, P. Elastic theory of flux lattices in the presence of weak disorder. Phys. Rev. B 52, 1242 (1995).Google Scholar
  10. 10.
    Le Doussal, P. and Giamarchi, T. Moving glass theory of driven lattices with disorder. Phys. Rev. B 57, 11356 (1998).Google Scholar
  11. 11.
    Nattermann, T. and Scheidl, S. Vortex-glass phases in type-II superconductors. Adv. Phys. 49, 607 (2000).Google Scholar
  12. 12.
    Giamarchi, T. and Le Doussal, P. Phase diagrams of flux lattices with disorder. Phys. Rev. B 55, 6577 (1997).Google Scholar
  13. 13.
    Yaron, U., Gammel, P. L., Huse, D. A., Kleiman, R. N., Oglesby, C. S., Bucher, E., Batlogg, B., Bishop, D. J., Mortensen, K., Clausen, K., Bolle, C. A., and De La Cruz, F. Neutron diffraction studies of flowing and pinned magnetic flux lattices in 2H-NbSe\(_{2}\). Phys. Rev. Lett. 73, 2748 (1994).Google Scholar
  14. 14.
    Cubitt, R., Forgan, E. M., Yang, G., Lee, S. L., Paul, D. M., Mook, H. A., Yethiraj, M., Kes, P. H., Li, T. W., Menovsky, A. A., Tarnawski, Z., and Mortensen, K. Direct observation of magnetic flux lattice melting and decomposition in the high-\({T}_c\) superconductor Bi\(_{2.15}\)Sr\(_{1.95}\)CaCu\(_2\)O\(_{8+x}\). Nature 365, 407 (1993).Google Scholar
  15. 15.
    Cubitt, R., Forgan, E. M., Yang, G., Lee, S. L., Paul, D. M., Mook, H. A., Yethiraj, M., Kes, P. H., Li, T. W., Menovsky, A. A., Tarnawski, Z., and Mortensen, K. Direct observation of magnetic flux lattice melting and decomposition in the high-\({T}_c\) superconductor Bi\(_{2.15}\)Sr\(_{1.95}\)CaCu\(_2\)O\(_{8+x}\). Nature 365, 407 (1993).Google Scholar
  16. 16.
    Anderson, P. W. Theory of flux creep in hard superconductors. Phys. Rev. Lett. 9, 309 (1962).Google Scholar
  17. 17.
    Beasley, M. R., Labusch, R., and Webb, W. W. Flux creep in type-II superconductors. Phys. Rev. 181, 682 (1969).Google Scholar
  18. 18.
    Brandt, E. H. Computer simulation of flux pinning in type-II superconductors. Phys. Rev. Lett. 50, 1599 (1983).Google Scholar
  19. 19.
    Jensen, H. J., Brass, A., and Berlinsky, A. J. Lattice deformations and plastic flow through bottlenecks in a two-dimensional model for flux pinning in type-II superconductors. Phys. Rev. Lett. 60, 1676 (1988).Google Scholar
  20. 20.
    Grønbech-Jensen, N., Bishop, A. R., and Domí­nguez, D. Metastable filamentary vortex flow in thin film superconductors. Phys. Rev. Lett. 76, 2985 (1996).Google Scholar
  21. 21.
    Matsuda, T., Harada, K., Kasai, H., Kamimura, O., and Tonomura, A. Observation of dynamic interaction of vortices with pinning centers by Lorentz microscopy. Science 271, 1393 (1996). http://rdg.ext.hitachi.co.jp/rd/moviee/vortices2-n.mpeg.Google Scholar
  22. 22.
    Berthier, C., Levy, L., and Martinez, G., editors. High Magnetic Fields: Applications in Condensed Matter Physics and Spectroscopy, volume 595 of Lecture Notes in Physics. Springer, (2002). p. 314.Google Scholar
  23. 23.
    Moon, K., Scalettar, R. T., and Zimányi, G. T. Dynamical phases of driven vortex systems. Phys. Rev. Lett. 77, 2778 (1996).Google Scholar
  24. 24.
    Balents, L., Marchetti, M. C., and Radzihovsky, L. Nonequilibrium steady states of driven periodic media. Phys. Rev. B 57, 7705 (1998).Google Scholar
  25. 25.
    Josephson, B. D. Possible new effects in superconductive tunnelling. Physics Letters 1, 251 (1962).Google Scholar
  26. 26.
    Feynman, R. P., Leighton, R. B., and Sands, M. The SchrÖdinger equation in a classical context: A seminar on superconductivity, volume III of The Feynman Lectures on Physics. Addison-Wesley, (1965).Google Scholar
  27. 27.
    Fossheim, K. and Sudbø, A. Superconductivity Physics and Applications, chapter 5, 123–140. John Wiley& Sons, Ltd (2005).Google Scholar
  28. 28.
    Finkler, A. A SQUID on a tip: A tool to explore vortex matter in high-T\(_\text{ C}\) superconductors. M.Sc. thesis, Weizmann Institute of Science, Rehovot, Israel, November (2006).Google Scholar
  29. 29.
    Grober, R. D., Acimovic, J., Schuck, J., Hessman, D., Kindlemann, P. J., Hespanha, J., Morse, A. S., Karrai, K., Tiemann, I., and Manus, S. Fundamental limits to force detection using quartz tuning forks. Rev. Sci. Instrum. 71, 2776 (2000).Google Scholar
  30. 30.
    Rychen, J., Ihn, T., Studerus, P., Herrmann, A., and Ensslin, K. A low-temperature dynamic mode scanning force microscope operating in high magnetic fields. Rev. Sci. Instrum. 70, 2765 (1999).Google Scholar
  31. 31.
    Karrai, K. and Grober, R. D. Piezo-electric tuning fork tip-sample distance control for near field optical microscopes. Ultramicroscopy 61, 197 (1995).Google Scholar
  32. 32.
    Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949 (2003).Google Scholar
  33. 33.
    Giessibl, F. J. Forces and frequency shifts in atomic-resolution dynamic-force microscopy. Phys. Rev. B 56, 16010 (1997).Google Scholar
  34. 34.
    Dürig, U. Relations between interaction force and frequency shift in large-amplitude dynamic force microscopy. Surf. Interface Anal. 75, 433 (1999).Google Scholar
  35. 35.
    Giessibl, F. J., Herz, M., and Mannhart, J. Friction traced to the single atom. Proc. Nat. Acad. Sci. 99, 12006 (2002).Google Scholar
  36. 36.
    Karrai, K. and Grober, R. D. Piezoelectric tip-sample distance control for near field optical microscopes. Appl. Phys. Lett. 66, 1842 (1995).Google Scholar
  37. 37.
    Seo, Y., Jhe, W., and Hwang, C. S. Electrostatic force microscopy using a quartz tuning fork. Appl. Phys. Lett. 80, 4324 (2002).Google Scholar
  38. 38.
    Atia, W. A. and Davis, C. C. A phase-locked shear-force microscope for distance regulation in near-field optical microscopy. Appl. Phys. Lett. 70, 405 (1997).Google Scholar
  39. 39.
    Charalambous, D., Kealey, P. G., Forgan, E. M., Riseman, T. M., Long, M. W., Goupil, C., Khasanov, R., Fort, D., King, P. J. C., Lee, S. L., and Ogrin, F. Vortex motion in type-II superconductors probed by muon spin rotation and small-angle neutron scattering. Phys. Rev. B 66, 054506 (2002).Google Scholar
  40. 40.
    Marchevsky, M., Aarts, J., Kes, P. H., and Indenbom, M. V. Observation of the correlated vortex flow in NbSe\(_2\) with magnetic decoration. Phys. Rev. Lett. 78, 531 (1997).Google Scholar
  41. 41.
    Pardo, F., de la Cruz, F., Gammel, P. L., Bucher, E., and Bishop, D. J. Observation of smectic and moving-bragg-glass phases in flowing vortex lattices. Nature 396, 348 (1998).Google Scholar
  42. 42.
    Troyanovski, A. M., Aarts, J., and Kes, P. H. Collective and plastic vortex motion in superconductors at high flux densities. Nature 399, 665 (1999).Google Scholar
  43. 43.
    Togawa, Y., Abiru, R., Iwaya, K., Kitano, H., and Maeda, A. Direct observation of the washboard noise of a driven vortex lattice in a high-temperature superconductor, Bi\(_2\)Sr\(_2\)CaCu\(_2\)O\(_y\). Phys. Rev. Lett. 85, 3716 (2000).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Weizmann Institute of ScienceRehovotIsrael

Personalised recommendations